- -

In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model

Mostrar el registro completo del ítem

Latorre, M.; Szafron, JM.; Ramachandra, AB.; Humphrey, JD. (2022). In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomechanics and Modeling in Mechanobiology. 21:827-848. https://doi.org/10.1007/s10237-022-01562-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189080

Ficheros en el ítem

Metadatos del ítem

Título: In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model
Autor: Latorre, Marcos Szafron, Jason M. Ramachandra, Abhay B. Humphrey, Jay D.
Entidad UPV: Universitat Politècnica de València. Centro de Investigación e Innovación en Bioingeniería - Centre de Recerca i Innovació en Bioenginyeria
Fecha difusión:
Resumen:
[EN] Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, ...[+]
Palabras clave: Tissue engineering , Fontan procedure , TEVG , Neovessel , Fluid-solid-growth
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomechanics and Modeling in Mechanobiology. (issn: 1617-7959 )
DOI: 10.1007/s10237-022-01562-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10237-022-01562-9
Código del Proyecto:
info:eu-repo/grantAgreement/NIH//R01 HL128602//Computational Model Driven Design of Tissue Engineered Vascular Grafts/
info:eu-repo/grantAgreement/NIH//R01 HL139796//Improving Tissue Engineered Vascular Graft Performance via Computational Modeling/
info:eu-repo/grantAgreement/DOD//W81 XWH1810518//Development and Preclinical Validation of an Improved Tissue-Engineered Vascular Graft for Use in Congenital Surgery/
Agradecimientos:
This research was supported by grants from the NIH (R01 HL128602, R01 HL139796) and DoD/USAMRAA (W81 XWH1810518).
Tipo: Artículo

References

Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233

Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. constitutive relations and model simulations. Ann Biomed Eng 35(9):1498–1509

Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: Fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202(3):229–243 [+]
Ambrosi D, Ben Amar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges and opportunities. J R Soc Interface 16(157):20190233

Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. constitutive relations and model simulations. Ann Biomed Eng 35(9):1498–1509

Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: Fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202(3):229–243

Blum KM, Zbinden J, Ramachandra AB, Lindsey SE, Szafron JM, Reinhardt JW, Heitkemper M, Best CA, Mirhaidari GJM, Chang YC, Ulziibayar A, Kelly J, Shah KV, Drews JD, Zakko J, Miyamoto S, Matsuzaki Y, Iwaki R, Ahmad H, Daulton R, Musgrave D, Wiet MG, Heuer E, Lawson E, Schwarz E, McDermott MR, Krishnamurthy R, Krishnamurthy R, Hor K, Armstrong AK, BB A, Berman D, Trask AJ, Humphrey JD, Marsden AL, Shinoka T, Breuer CK, (2022) Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Commun Med 2:3

Bockeria L, Carrel T, Lemaire A, Makarenko V, Kim A, Shatalov K, Cox M, Svanidze O (2020) Total cavopulmonary connection with a new restorative vascular graft: results at 2 years. J Thorac Dis 12(8):4168

Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664

Cyron CJ, Aydin RC, Humphrey JD (2016) A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol 15(6):1389–1403

Drews JD, Pepper VK, Best CA, Szafron JM, Cheatham JP, Yates AR, Hor KN, Zbinden JC, Chang YC, Mirhaidari GJ, Ramachandra AB, Miyamoto S, Blum KM, Onwuka EA, Zakko J, Kelly J, Cheatham SL, King N, Reinhardt JW, Sugiura T, Miyachi H, Matsuzaki Y, Breuer J, Heuer ED, West TA, Shoji T, Berman D, Boe BA, Asnes J, Galantowicz M, Matsumura G, Hibino N, Marsden AL, Pober JS, Humphrey JD, Shinoka T, Breuer CK (2020) Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Trans Med 12(537):eaax6919

Emmert MY, Schmitt BA, Loerakker S, Sanders B, Spriestersbach H, Fioretta ES, Bruder L, Brakmann K, Motta SE, Lintas V, Dijkman PE, Frese L, Berger F, Baaijens FPT, Hoerstrup SP (2018) Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med 10(440):eaan4587

Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45):3583–3602

Fleeter CM, Geraci G, Schiavazzi DE, Kahn AM, Marsden AL (2020) Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput Methods Appl Mech Eng 365:113030

Fung YC (1995) Stress, strain, growth, and remodeling of living organisms. In: Casey J, Crochet MJ (eds) Theoretical, experimental, and numerical contributions to the mechanics of fluids and solids. Birkhäuser, Basel, pp 469–482

Furdella KJ, Higuchi S, Behrangzade A, Kim K, Wagner WR, Geest JPV (2021) In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance. Acta Biomater 123:298–311

Grytsan A, Watton PN, Holzapfel GA (2015) A thick-walled fluid-solid-growth model of abdominal aortic aneurysm evolution: application to a patient-specific geometry. J Biomech Eng 137(3):031008

Harrison S, Tamimi E, Uhlorn J, Leach T, Vande Geest JP (2016) Computationally optimizing the compliance of a biopolymer based tissue engineered vascular graft. J Biomech Eng 138(1):014505

Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436

Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues and organs. Springer-Verlag, New York

Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(03):407–430

Khosravi R, Miller KS, Best CA, Shih YC, Lee YU, Yi T, Shinoka T, Breuer CK, Humphrey JD (2015) Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation. Tissue Eng Part A 21(9–10):1529–1538

Kirkton RD, Santiago-Maysonet M, Lawson JH, Tente WE, Dahl SLM, Niklason LE, Prichard HL (2019) Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Trans Med 11(485):eaau6934

Latorre M, Humphrey JD (2018) A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. ZAMM-J Appl Math Mech 98:2048–2071

Latorre M, Humphrey JD (2020) Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput Methods Appl Mech Eng 368:113156

Latorre M, Humphrey JD (2020) Numerical knockouts-in silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Comput Biol 16(10):e1008273

Lee Y, Naito Y, Kurobe H, Breuer C, Humphrey J (2013) Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. J Biomech 46(13):2277–2282

Loerakker S, Ristori T (2020) Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. Current Opinion Biomed Eng 15:1–9

Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) Febio: finite elements for biomechanics. J Biomech Eng 134(1):011005

Matsuzaki Y, John K, Shoji T, Shinoka T (2019) The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl Sci 9(7):1274

Miller KS, Lee YU, Naito Y, Breuer CK, Humphrey JD (2014) Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. J Biomech 47(9):2080–2087

Miller KS, Khosravi R, Breuer CK, Humphrey JD (2015) A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater 11:283–294

Mousavi SJ, Jayendiran R, Farzaneh S, Campisi S, Viallon M, Croisille P, Avril S (2021) Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. Comput Methods Programs Biomed 205:106107

Niklason LE, Lawson JH (2020) Bioengineered human blood vessels. Science 370(6513):eaaw8682

Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493

Reinhardt JW, Rosado JdDR, Barker JC, Lee YU, Best CA, Yi T, Zeng Q, Partida-Sanchez S, Shinoka T, Breuer CK (2019) Early natural history of neotissue formation in tissue-engineered vascular grafts in a murine model. Regen Med 14(5):389–408

Sánchez PF, Brey EM, Briceño JC (2018) Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 12(11):2164–2178

Schwarz EL, Kelly JM, Blum KM, Hor KN, Yates AR, Zbinden JC, Verma A, Lindsey SE, Ramachandra AB, Szafron JM, Humphrey JD, Shinoka T, Marsden AL, Breuer CK (2021) Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. NPJ Regenerative Med 6:38

Sheidaei A, Hunley SC, Zeinali-Davarani S, Raguin LG, Baek S (2011) Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys 33(1):80–88

Sokolis DP (2013) Experimental investigation and constitutive modeling of the 3d histomechanical properties of vein tissue. Biomech Model Mechanobiol 12(3):431–451

Stowell CET, Wang Y (2018) Quickening: translational design of resorbable synthetic vascular grafts. Biomaterials 173:71–86

Syedain ZH, Graham ML, Dunn TB, O’Brien T, Johnson SL, Schumacher RJ, Tranquillo RT (2017) A completely biological “off-the-shelf’’ arteriovenous graft that recellularizes in baboons. Sci Trans Med 9(414):eaan4209

Szafron JM, Khosravi R, Reinhardt J, Best CA, Bersi MR, Yi T, Breuer CK, Humphrey JD (2018) Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts. Ann Biomed Eng 46(11):1938–1950

Szafron JM, Ramachandra AB, Breuer CK, Marsden AL, Humphrey JD (2019) Optimization of tissue-engineered vascular graft design using computational modeling. Tissue Eng Part C Methods 25(10):561–570

Tamimi EA, Ardila DC, Ensley BD, Kellar RS, Vande Geest JP (2019) Computationally optimizing the compliance of multilayered biomimetic tissue engineered vascular grafts. J Biomech Eng 141(6):061003

Teixeira FS, Neufeld E, Kuster N, Watton PN (2020) Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases. Biomech Model Mechanobiol 19(6):2413–2431

Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2017) Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541

Valentín A, Humphrey JD, Holzapfel GA (2013) A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation: theory and numerical verification. Int J Numer Methods Biomed Eng 29(8):822–849

Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606

Wissing TB, van Haaften EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CVC, Smits AIPM (2020) Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages-implications for in situ vascular tissue engineering. Biomater Sci 8(1):132–147

Wu J, Shadden SC (2015) Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann Biomed Eng 43(7):1543–1554

Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H (2018) Tissue-engineered vascular grafts: balance of the four major requirements. Colloid Interf Sci Commun 23:34–44

Yang W, Feinstein JA, Shadden SC, Vignon-Clementel IE, Marsden AL (2013) Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. J Biomech Eng 135(1):011002

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem