- -

Multidisciplinary studies supporting conservation programmes of two rare, endangered Limonium species from Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidisciplinary studies supporting conservation programmes of two rare, endangered Limonium species from Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Orenga, Sara es_ES
dc.contributor.author Donat-Torres, Maria P. es_ES
dc.contributor.author Llinares Palacios, Josep Vicent es_ES
dc.contributor.author Navarro, Albert es_ES
dc.contributor.author Collado, Francisco es_ES
dc.contributor.author Ferrer-Gallego, P. Pablo es_ES
dc.contributor.author Laguna Lumbreras, Emilio es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.date.accessioned 2022-11-07T16:33:54Z
dc.date.available 2022-11-07T16:33:54Z
dc.date.issued 2021-09 es_ES
dc.identifier.issn 0032-079X es_ES
dc.identifier.uri http://hdl.handle.net/10251/189325
dc.description.abstract [EN] Background and aims Two local threatened endemics from Valencian salt marshes were analysed from a multidisciplinary perspective combining field studies with experiments performed under greenhouse-controlled conditions. The work aimed to investigate the habitat of the two species but also to explore their limits of tolerance to severe drought and salinity and the mechanisms behind their stress responses. Methods The number of individuals in several populations, climatic conditions, soil characteristics and accompanying vegetation in the natural habitats were analysed in the field study. Plants obtained by seed germination were grown in the greenhouse and subjected to one month of water and salt stress treatments. Growth and biochemical parameters were analysed after the treatments were finalised. Results No correlation between climatic parameters and the number of individuals censed of the two Limonium species could be established. Although L. dufourii was found in more saline soils in the natural habitats, under controlled greenhouse conditions, this species was more severely affected by salt treatment than L. albuferae, which is more susceptible to water stress. A common biochemical response was the increase of proline under all stress treatments, but mostly in water-stressed plants. Oxidative stress markers, MDA and H2O2, did not indicate significant differences between the treatments. The differences in the two species¿ responses to the two kinds of stress were correlated with the activation of the antioxidant enzymes, more pronounced in conditions of salt stress in L. albuferae and of water stress in L. dufourii. Conclusions Although L. albuferae is found in sites with lower salinity in the natural habitats, the greenhouse experiment indicated that it tolerates higher concentrations of salt than L. dufouri, which is more resistant to drought. The two species efficiently mitigate oxidative stress by activation of antioxidant enzymes. The results obtained may be helpful for the conservation management of the two species: whereas salinity is not problematic, as the two species tolerated under controlled conditions salinities far beyond those in their natural environments, water scarcity may be a problem for L. albuferae, which proved to be more susceptible to water deficit. es_ES
dc.description.sponsorship This research was supported by the project AICO/2017/039 from Generalitat Valenciana. We are indebted to Dr Inmaculada Bautista (Universitat Politecnica de Valencia, Spain) for her valuable suggestions for improving the manuscript. Thanks to Inmaculada Ferrando Pardo for helping in the study and conservation of the seeds in the Centre for Forest Research and Experimentation of the Valencian Region (CIEF). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant and Soil es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Salt marshes es_ES
dc.subject Salinity es_ES
dc.subject Water stress es_ES
dc.subject Endemics es_ES
dc.subject Osmolyes es_ES
dc.subject Antioxidants es_ES
dc.title Multidisciplinary studies supporting conservation programmes of two rare, endangered Limonium species from Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11104-021-05059-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//AICO%2F2017%2F039//MECANISMOS DE TOLERANCIA A ESTRES HIDRICO Y SALINO EN PLANTAS ENDEMICA, RARAS O AMENAZADAS, E IMPLICACIONES PARA SU MANTENIMIENTO O REINTRODUCCION EN EL PARC NATURAL DE L'ALBUFERA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation González-Orenga, S.; Donat-Torres, MP.; Llinares Palacios, JV.; Navarro, A.; Collado, F.; Ferrer-Gallego, PP.; Laguna Lumbreras, E.... (2021). Multidisciplinary studies supporting conservation programmes of two rare, endangered Limonium species from Spain. Plant and Soil. 466(1-2):505-524. https://doi.org/10.1007/s11104-021-05059-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11104-021-05059-9 es_ES
dc.description.upvformatpinicio 505 es_ES
dc.description.upvformatpfin 524 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 466 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\445624 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references Aebi H (1984) Catalase in Vitro Method Enzymol 105:121–126 es_ES
dc.description.references Aguilella A, Fos S, Laguna E (2010) Catálogo Valenciano de especies de flora amenazadas. Generalitat Valenciana, Valencia es_ES
dc.description.references Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016) Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Front Plant Sci 7:473. https://doi.org/10.3389/fpls.2016.00473 es_ES
dc.description.references Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017) Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Front Plant Sci 8:1438. https://doi.org/10.3389/fpls.2017.01438 es_ES
dc.description.references Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341 es_ES
dc.description.references Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399 es_ES
dc.description.references Ballester JA, Díes B, Hernández Muñoz JA, Laguna E, Oltra C, Palop S, Urios G (2003) Parques naturales de la Comunidad Valenciana. Generalitat Valenciana, Valencia es_ES
dc.description.references Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207 es_ES
dc.description.references Ben Hamed K, Chibani F, Abdelly C, Magne C (2014) Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 69:193–201. https://doi.org/10.2478/s11756-013-0304-1 es_ES
dc.description.references Beyer W, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566 es_ES
dc.description.references Blainski A, Lopes GC, Pallazzo De Mello JC (2013) Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18:6852–6865. https://doi.org/10.3390/molecules18066852 es_ES
dc.description.references Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186 es_ES
dc.description.references Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257 es_ES
dc.description.references Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465 es_ES
dc.description.references Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 es_ES
dc.description.references Braun-Blanquet J (1964) Pflanzensoziologie. Grundzge der Vegetationskunde, 3rd edn. Springer, Wien-New York es_ES
dc.description.references Cavalieri AJ, Huang AHC (1979) Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Am J Bot 66:307–312 es_ES
dc.description.references Choudhary A, Kumar A, Kaur N (2019) ROS and oxidative burst: roots in plant development. Plant Divers 42:33–43. https://doi.org/10.1016/j.pld.2019.10.002 es_ES
dc.description.references Connell JP, Mullet JE (1986) Pea chloroplast glutathione reductase: purification and characterization. Plant Physiol 82:351–356 es_ES
dc.description.references Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053 es_ES
dc.description.references Del Río LA, Palma JM, Sandalio LM, Corpas FJ, Pastori GM, Bueno P, López-Huertas E (1996) Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans 2:434–438 es_ES
dc.description.references Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York. https://doi.org/10.1007/978-1-4614-0634-1_9 es_ES
dc.description.references Dubois M, Gilles KA, Hamilton JK, Reberd PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 es_ES
dc.description.references Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021) The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci 6(11):552969. https://doi.org/10.3389/fpls.2020.552969 es_ES
dc.description.references Euro+Med (2006+): Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/. Accessed 10 June 2020 es_ES
dc.description.references Ferrer-Gallego PP, Roselló R, Rosato M, Rosselló JA, Laguna E (2016) Limonium albuferae (Plumbaginaceae), a new polyploid species from the Eastern Iberian Peninsula. Phytotaxa 252:114–122 es_ES
dc.description.references Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711 es_ES
dc.description.references Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 17:945–963 es_ES
dc.description.references Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–335 es_ES
dc.description.references Furtana GB, Dumani H, Tipirdamaz R (2013) Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turk J Bot 37:455–463 es_ES
dc.description.references Gagneul D, Aïnouche A, Duhazé C, Lugan R, Larher FR, Bouchereau A (2007) A. reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611 es_ES
dc.description.references Gardner RC, Barchiesi S, Beltrame C, Finlayson CM, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard DE, Rosenqvist A, Walpole M (2015) State of the world’s wetlands and their services to people: compilation of recent analyses. Ramsar Briefing Note no. 7. Gland, Switzerland: Ramsar Convention Secretariat es_ES
dc.description.references Gil R, Bautista I, Boscaiu M, Lidón A, Wankahde S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6 plu049. https://doi.org/10.1093/aobpla/plu049 es_ES
dc.description.references González-Orenga S, Ferrer-Gallego PP, Laguna E, López-Gresa MP, Donat-Torres MP, Verdeguer M, Vicente O, Boscaiu M (2019a) Insights on salt tolerance of two endemic Limonium species from Spain. Metabolites 9, 294. https://doi.org/10.3390/metabo9120294 es_ES
dc.description.references González-Orenga S, Al Hassan M, Llinares JV, Lisón P, López-Gresa MP, Verdeguer M, Vicente O, Boscaiu M (2019b) Qualitative and quantitative differences in osmolytes accumulation and antioxidant activities in response to water deficit in four Mediterranean Limonium species. Plants 8:506. https://doi.org/10.3390/plants8110506 es_ES
dc.description.references González-Orenga S, Llinares JV, Al Hassan M, Fita A, Collado F, Lisón P, Vicente O, Boscaiu M (2020) Physiological and morphological characterisation of Limonium species in their natural habitats: Insights into their abiotic stress responses. Plant Soil 449:267–284 es_ES
dc.description.references Grieve CM, Poss JA, Grattam SR, Sheuse PJ, Lieth JH, Zeng L (2005) Productivity and mineral nutrition of Limonium species irrigated with saline wastewaters. Hort Sci 40:654–658 es_ES
dc.description.references Grigore MN, Toma C (2020) Integrative anatomy of halophytes from Mediterranean Climate. In: Grigore MN. (ed) Handbook of halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_40-1 es_ES
dc.description.references Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113 es_ES
dc.description.references Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7.https://doi.org/10.1093/aobpla/plv004 es_ES
dc.description.references Hanson DA, Rathinasabapathi B, Chamberlin B, Gage DA (1991) Comparative Physiological evidence that ß-alanin betaine and choline-O-sulfate act as compatible osmolytes in halophytic Limonium species. Plant Physiol 97:1199–1205 es_ES
dc.description.references Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agriculture Experiment Station Publications. C347 rev 1950 es_ES
dc.description.references Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611 es_ES
dc.description.references Iriondo JM, Albert MJ, Bañares Á, De la Cruz M, Domínguez F, Escudero A, García MB, Guzmán D, Marrero M, Moreno JC, Sainz H, Tapia F, Torres E (2003) Metodología de obtención de datos en poblaciones naturales. In: Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (eds) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Taxones prioritarios. Ministerio de Medio Ambiente, Madrid, pp 37–40 es_ES
dc.description.references Iriondo JM, Albert MJ, Bañares Á, De la Cruz M, Domínguez F, Escudero A, García MB, Guzmán D, Marrero M, Moreno JC, Sainz H, Tapia F, Torres E (2009) Data collection in populations. In: Iriondo JM, Albert MJ, Giménez Benavides F, Domínguez F, Escudero A (eds) Populations in peril: demographic viability of threatened Spanish vascular flora. Ministerio de Medio Ambiente. Medio Rural y Marino, Madrid, pp 19–35 es_ES
dc.description.references Li Y (2008) Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environ 54:493–497 es_ES
dc.description.references Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592 es_ES
dc.description.references Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Bartels JM (ed) Methods of soil analysis. Part 3. Chemical methods, Book series 5, Bigham, Wisconsin, pp 437–474 es_ES
dc.description.references Loreto F, Velikova V (2002) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787 es_ES
dc.description.references Martínez-Fort J, Donat-Torres MP (2020) Spartina genus in the Valencian littoral (Spain). In: Grigore MN (ed) Handbook of halophytes. From molecules to ecosystems towards biosaline agriculture. Springer (in press) es_ES
dc.description.references Mateo G, Crespo MB (2014) Claves ilustradas de la Flora Valenciana. Monografías de Flora Montiberica. 6. Jolube, Jaca. es_ES
dc.description.references Mitsch WJ, Bernal B, Hernández ME (2015) Ecosystem services of wetlands. Int J Biodivers Sci Ecosyst Serv Manag 11:1–4 es_ES
dc.description.references Morales MA, Olmos E, Torrecillas A, Sánchez-Blanco MJ, Alarcó J (2001) Differences in water relations, leaf ion accumulation and excretion rates between cultivated and wild species of Limonium sp. grown in conditions of saline stress. Flora 196:345–352 es_ES
dc.description.references Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880 es_ES
dc.description.references Navarro A, Oltra JE, Pérez Botella J, Pérez Rovira P, Laguna E (2010) Cartografía de poblaciones de táxones del Catálogo Valenciano de Especies de Flora Amenazadas. In: Giménez P, Marco JA, Matarredona E, Padilla A, Sánchez A (eds) Biogeografía. Una ciencia para la conservación del medio. Universidad de Alicante, Alicante, pp 99–107 es_ES
dc.description.references Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol 40:832–847 es_ES
dc.description.references Palacios C, González-Candelas F (1997) Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Mol Ecol 6:1107–1121 es_ES
dc.description.references Palacios C, Kresovich S, González-Candelas F (1999) A population genetic study of the endangered plant speices Limonium dufourii (Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Mol Ecol 8:645–657 es_ES
dc.description.references Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384 es_ES
dc.description.references Rivas-Martínez S, Fernández-González F, Loidi J, Lousa M, Penas A (2001) Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica 14:5–341 es_ES
dc.description.references Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J, Lousa M (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobotanica 15:5–922 es_ES
dc.description.references Ruiz-Riaguas A, Zengin G, Sinan KI, Salazar-Mendías C, Llorent-Martínez EJ (2020) Phenolic profile, antioxidant activity, and enzyme inhibitory properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J Chem 1016208.https://doi.org/10.1155/2020/1016208 es_ES
dc.description.references Senizza B, Zhang L, Rocchetti G, Zengin G, Ak G, Yıldıztugay E, Elbasan F, Jugreet S, Mahomoodally MF, Lucini L (2021) Metabolomic profiling and biological properties of six Limonium species: novel perspectives for nutraceutical purposes. Food Funct 12(8):3443–3454. https://doi.org/10.1039/d0fo02968h es_ES
dc.description.references SIAR. The Agroclimatic Information System for Irrigation (SIAR). SIAR (Sistema de Información Agroclimática para Regadío). Benifaió. Llíria and Moncada agro-meteorological stations. Available via http://eportal.miteco.gob.es/websiar/Inicio.aspx. Accessed 15 May 2020 (in Spanish) es_ES
dc.description.references Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16:13561–13578 es_ES
dc.description.references Soria JM (2006) Past, present and future of l’Albufera of Valencia Natural Park. Limnetica 25:135–142 es_ES
dc.description.references Souid A, Gabriele M, Longo V, Pucci L, Bellani L, Smaoui A, Abdelly C, Hamed K (2016) Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Funct Plant Biol 43:607–619 es_ES
dc.description.references Souid A, Bellani L, Magné C, Zorrig W, Smaoui A, Abdelly C, Longo V, Hamed K (2018) Physiological and antioxidant responses of the sabkha biotope halophyte Limonium delicatulum to seasonal changes in environmental conditions. Plant Physiol Biochem 123:180–191 es_ES
dc.description.references Souid A, Bellani L, Gabriele M, Pucci L, Smaoui A, Abdelly C, Hamed KB, Longo V (2019) Phytochemical and biological activities in Limonium species collected in different biotopes of Tunisia. Chem Biodivers 16:e1900216 es_ES
dc.description.references Sutton-Grier AE, Sandifer PA (2019) Conservation of wetlands and other coastal ecosystems: a commentary on their value to protect biodiversity, reduce disaster impacts, and promote human health and well-being. Wetlands 39:1295–1302 es_ES
dc.description.references Tabot PT, Adams JB (2014) Salt secretion, proline accumulation and increased branching confer tolerance to drought and salinity in the endemic halophyte Limonium linifolium. S Afr J Bot 94:64–73 es_ES
dc.description.references Taulavuori E, Hellström EK, Taulavuori K, Laine K (2001) Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation. J Exp Bot 52:2375–2380 es_ES
dc.description.references Tipirdamaz R, Gagneul D, Duhazé AA, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153 es_ES
dc.description.references Touchette BW, Kneppers MK, Eggert MC (2019) Salt marsh plants: Biological overview and vulnerability to climate change. In: Hasanuzzaman M, Shabala S, Fujita M (eds) Halophytes and climate change: adaptive mechanisms and potential uses. CAB International, Wallingford, pp 115–134 es_ES
dc.description.references van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114 es_ES
dc.description.references Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38 es_ES
dc.description.references Wang LS, Li WL, Ma L, Chen J, Lu H, Jian TY (2016) Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind Crop Prod 84:248–253 es_ES
dc.description.references Wang LS, Li WL, Qi XW, Ma L, Wu WL (2017) Physiological and proteomic response of Limonium bicolor to salinity. Russ J Plant Physiol 64:349–360 es_ES
dc.description.references Weber HE, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature. J Veg Sci 11:739–768 es_ES
dc.description.references Wolanski E, Brinson M, Cahoon DME, Perillo GME (2009) Coastal wetlands: a synthesis. In: Perillo GME, Wolanski E, Cahoon DME, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 1–62 es_ES
dc.description.references Worldwide Bioclimatic Classification System (1996–2020) Rivas-Martínez S, Rivas-Saenz S. Phytosociological Research Center. Spain. Available via http://www.globalbioclimatics.org. Accessed 15 May 2020 es_ES
dc.description.references Zhang X, Yin HB, Chen SH, He J, Guo SL (2014) Changes in antioxidant enzyme activity and transcript levels of related genes in Limonium sinense Kuntze seedlings under NaCl stress. J Chem 2014:749047. https://doi.org/10.1155/2014/749047 es_ES
dc.description.references Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem