- -

Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems

Show full item record

Moravejosharieh, AH.; Lloret, J. (2020). Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems. Wireless Networks. 26(4):2857-2874. https://doi.org/10.1007/s11276-019-02211-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189327

Files in this item

Item Metadata

Title: Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems
Author: Moravejosharieh, Amir Hossein Lloret, Jaime
Issued date:
Abstract:
[EN] One of the main issues experienced in wireless body sensor networks (WBSNs) is the destructive impacts of "mutual interference" caused by neighboring WBSNs on each other's performance. Research communities have proposed ...[+]
Subjects: Wireless body sensor network , IEEE 802.15.4 , Performance evaluation , Mutual interference , Frequency utilisation
Copyrigths: Reserva de todos los derechos
Source:
Wireless Networks. (issn: 1022-0038 )
DOI: 10.1007/s11276-019-02211-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11276-019-02211-3
Type: Artículo

References

Bravos. G., & Kanatas, A. G. (2005). Energy consumption and trade-offs on wireless sensor networks. In IEEE 16th international Symposium on personal, indoor and mobile radio communications (Pimrc) (Vol. 2, pp. 1279–1283).

Castalia. A simulator for WSNs. URL Available at: https://castalia.npc.nicta.com.au/. Accessed Dec 2019.

Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93. https://doi.org/10.1109/MCOM.2009.5350373. ISSN 0163-6804. [+]
Bravos. G., & Kanatas, A. G. (2005). Energy consumption and trade-offs on wireless sensor networks. In IEEE 16th international Symposium on personal, indoor and mobile radio communications (Pimrc) (Vol. 2, pp. 1279–1283).

Castalia. A simulator for WSNs. URL Available at: https://castalia.npc.nicta.com.au/. Accessed Dec 2019.

Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93. https://doi.org/10.1109/MCOM.2009.5350373. ISSN 0163-6804.

Deylami, M. N., & Jovanov, E. (2014). A distributed scheme to manage the dynamic coexistence of IEEE 802.15.4-based health-monitoring wbans. IEEE Journal of Biomedical and Health Informatics, 18(1), 327–334. https://doi.org/10.1109/JBHI.2013.2278217. ISSN 2168-2194.

IEEE standard for local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (lr-wpans). In IEEE Std 802.15.4-2011 (revision of IEEE Std 802.15.4-2006) (pp. 1–314), September 2011. https://doi.org/10.1109/IEEESTD.2011.6012487.

IEEE standard for local and metropolitan area networks—Part 15.6: Wireless body area networks. In IEEE Std 802.15.6-2012 (pp. 1–271), February 2012. https://doi.org/10.1109/IEEESTD.2012.6161600.

Karalis, A., Zorbas, D., & Douligeris, C. (2018). Collision-free broadcast methods for IEEE 802.15.4-TSCH networks formation. In Proceedings of the 21st ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWIM ’18, New York, NY, USA, 2018 (pp. 91–98). ACM. ISBN 978-1-4503-5960-3. https://doi.org/10.1145/3242102.3242108.

Khanafer, M., Guennoun, M., & Mouftah, H. T. (2018). A survey of beacon-enabled IEEE 802.15.4 MAC protocols in wireless sensor networks. IEEE Communications Surveys Tutorials, 16(2), 856–876. https://doi.org/10.1109/SURV.2013.112613.00094. ISSN 1553-877X.

Kim, S., Kim, J.W., & Eom, D.S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 157–164). https://doi.org/10.1109/SECON.2012.6275772.

Kim, T. H., Ha, J. Y., & Choi, S. (2009). Improving spectral and temporal efficiency of collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596–1609. https://doi.org/10.1109/TMC.2009.85. ISSN 1536-1233.

Koubaa, A., Cunha, A., & Alves, M. (2007). A time division beacon scheduling mechanism for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks. In 19th Euromicro conference on real-time systems (ECRTS’07) (pp. 125–135). https://doi.org/10.1109/ECRTS.2007.82.

Lin, Q., & Tian, J. (2011). Minimum-energy-cost algorithm based on superframe adaptation control. In 2011 IEEE international conference on communications (ICC) (pp. 1–5). https://doi.org/10.1109/icc.2011.5962445.

Moravejosharieh, A. Mitigating the impact of mutual interference in IEEE 802.15.4-based wireless body sensor networks. https://ir.canterbury.ac.nz/handle/10092/12380. Accessed Feb 2016.

Moravejosharieh, A., & Willig, A. (2015). Frequency-adaptive approach in IEEE 802.15.4 wireless body sensor networks: Continuous-assessment or periodic-assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19–34. https://doi.org/10.17972/ajicta2015113. ISSN 2205-0930.

Moravejosharieh, A., & Yazdi, E. T. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: The need for enhancement. In 2013 IEEE 16th international conference on computational science and engineering (pp. 1226–1231). https://doi.org/10.1109/CSE.2013.182.

Moravejosharieh, A., Tabatabaei Yazdi, E., & Willig, A. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: Greedy channel utilization. In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://doi.org/10.1109/ICON.2013.6781976.

Moravejosharieh, A., Yazdi, E. T., Willig, A., & Pawlikowski, K. (2014). Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Continuous hopping approach. In 2014 Australasian telecommunication networks and applications conference (ATNAC) (pp. 93–98). https://doi.org/10.1109/ATNAC.2014.7020880.

Moravejosharieh, A., Tabatabaei Yazdi, E., Pawlikowski, K., & Sirisena, H. (2015) Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Adaptive phase-shifting approach. In 2015 international telecommunication networks and applications conference (ITNAC) (pp. 94–99). https://doi.org/10.1109/ATNAC.2015.7366795.

Moravejosharieh, A. H. (2017). Performance evaluation of IEEE 802.15. 4-based wireless body sensor networks: An experimental study. International Journal of Information, Communication Technology and Applications, 3(1), 15–27.

Moravejosharieh, A., & Ahmadi, K. (2017). Experimental evaluation of mutual interference in co-located IEEE 802.15. 4-based wireless body sensor networks. In 27th international telecommunication networks and applications conference (ITNAC), 2017 (pp. 1–6). IEEE

Moravejosharieh, A., & Lloret, J. (2016a). Performance evaluation of co-located IEEE 802.15. 4-based wireless body sensor networks. Annals of Telecommunications, 71(9–10), 425–440.

Moravejosharieh, A., & Lloret, J. (2016b). A survey of IEEE 802.15. 4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems, 29(7), 1269–1292.

Pediaditakis, D., Tselishchev, Y., & Boulis, A. (2010) Performance and scalability evaluation of the castalia wireless sensor network simulator. In Proceedings of the 3rd international ICST conference on simulation tools and techniques, SIMUTools ’10, Belgium, 2010 (pp. 53:1–53:6). Brussels: ICST. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-87-5. https://doi.org/10.4108/ICST.SIMUTOOLS2010.8727.

Pešović, U., & Planinšič, P. (2017). Error probability model for IEEE 802.15.4 wireless communications in the presence of co-channel interference. Physical Communication, 25, 43–53. https://doi.org/10.1016/j.phycom.2017.08.019. ISSN 1874-4907.

Poe, Y., & Schmitt, B. (2009). Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. ACM Asian internet engineering conference, Aintec ’09 (pp. 77–84). New York, NY.

Texas Instruments. Cc2420: Single-chip 2.4 Ghz IEEE 802.15.4 compliant and zigbee ready Rf transceiver. Retrieved July, 2014, from https://www.Ti.Com/Product/Cc2420.

Toscano, E., & Bello, L. L. (2012). Multichannel superframe scheduling for IEEE 802.15.4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350. https://doi.org/10.1109/TII.2011.2166773. ISSN 1551-3203.

Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094. https://doi.org/10.1007/s10916-010-9571-3. ISSN 1573-689X.

Yazdi, E. T., Willig, A., & Pawlikowski, K. (2013) Shortening orphan time in IEEE 802.15.4: What can be gained? In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://doi.org/10.1109/ICON.2013.6781984.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record