- -

Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moravejosharieh, Amir Hossein es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2022-11-07T16:33:57Z
dc.date.available 2022-11-07T16:33:57Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 1022-0038 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189327
dc.description.abstract [EN] One of the main issues experienced in wireless body sensor networks (WBSNs) is the destructive impacts of "mutual interference" caused by neighboring WBSNs on each other's performance. Research communities have proposed several approaches to mitigate the impacts of mutual interference on the reliability of data transmission and sensor's energy consumption. However, the proposed approaches came with a number of limitations, such as significant modification of the standard protocol or imposing a high level of complexity. In this paper, a range of schemes are proposed, and their performances are evaluated in the presence of mutual interference experienced in a dynamic environment.More specifically, we consider a situation where a large number of people (each individual covered with a number of sensors to fetch the human vital sign) are gathered at a sport centre to enjoy an event. In such a dynamic environment, people would highly likely experience mutual interference which would destructively impact on WBSN's performances and eventually would result in an unreliable medical outcome. A simulation study is conducted in which a set of schemes proposed that indicates a gradual improvement of WBSN's performances in terms of reliability of data transmission and sensor's energy consumption. Our obtained results show that the frequency-adaptation strategy combined with phase-adaptation approach significantly improves the performance of WBSNs in the presence of mutual interference in a dynamic environment. Moreover, an experimental study is carried out to examine the feasibility of implementing the predominant scheme on real-world sensor devices and to further support the outcome of the simulation study. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Wireless Networks es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wireless body sensor network es_ES
dc.subject IEEE 802.15.4 es_ES
dc.subject Performance evaluation es_ES
dc.subject Mutual interference es_ES
dc.subject Frequency utilisation es_ES
dc.title Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11276-019-02211-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Moravejosharieh, AH.; Lloret, J. (2020). Mitigation of mutual interference in IEEE 802.15.4-based wireless body sensor networks deployed in e-health monitoring systems. Wireless Networks. 26(4):2857-2874. https://doi.org/10.1007/s11276-019-02211-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11276-019-02211-3 es_ES
dc.description.upvformatpinicio 2857 es_ES
dc.description.upvformatpfin 2874 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\473158 es_ES
dc.description.references Bravos. G., & Kanatas, A. G. (2005). Energy consumption and trade-offs on wireless sensor networks. In IEEE 16th international Symposium on personal, indoor and mobile radio communications (Pimrc) (Vol. 2, pp. 1279–1283). es_ES
dc.description.references Castalia. A simulator for WSNs. URL Available at: https://castalia.npc.nicta.com.au/. Accessed Dec 2019. es_ES
dc.description.references Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93. https://doi.org/10.1109/MCOM.2009.5350373. ISSN 0163-6804. es_ES
dc.description.references Deylami, M. N., & Jovanov, E. (2014). A distributed scheme to manage the dynamic coexistence of IEEE 802.15.4-based health-monitoring wbans. IEEE Journal of Biomedical and Health Informatics, 18(1), 327–334. https://doi.org/10.1109/JBHI.2013.2278217. ISSN 2168-2194. es_ES
dc.description.references IEEE standard for local and metropolitan area networks—Part 15.4: Low-rate wireless personal area networks (lr-wpans). In IEEE Std 802.15.4-2011 (revision of IEEE Std 802.15.4-2006) (pp. 1–314), September 2011. https://doi.org/10.1109/IEEESTD.2011.6012487. es_ES
dc.description.references IEEE standard for local and metropolitan area networks—Part 15.6: Wireless body area networks. In IEEE Std 802.15.6-2012 (pp. 1–271), February 2012. https://doi.org/10.1109/IEEESTD.2012.6161600. es_ES
dc.description.references Karalis, A., Zorbas, D., & Douligeris, C. (2018). Collision-free broadcast methods for IEEE 802.15.4-TSCH networks formation. In Proceedings of the 21st ACM international conference on modeling, analysis and simulation of wireless and mobile systems, MSWIM ’18, New York, NY, USA, 2018 (pp. 91–98). ACM. ISBN 978-1-4503-5960-3. https://doi.org/10.1145/3242102.3242108. es_ES
dc.description.references Khanafer, M., Guennoun, M., & Mouftah, H. T. (2018). A survey of beacon-enabled IEEE 802.15.4 MAC protocols in wireless sensor networks. IEEE Communications Surveys Tutorials, 16(2), 856–876. https://doi.org/10.1109/SURV.2013.112613.00094. ISSN 1553-877X. es_ES
dc.description.references Kim, S., Kim, J.W., & Eom, D.S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. In 2012 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 157–164). https://doi.org/10.1109/SECON.2012.6275772. es_ES
dc.description.references Kim, T. H., Ha, J. Y., & Choi, S. (2009). Improving spectral and temporal efficiency of collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596–1609. https://doi.org/10.1109/TMC.2009.85. ISSN 1536-1233. es_ES
dc.description.references Koubaa, A., Cunha, A., & Alves, M. (2007). A time division beacon scheduling mechanism for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks. In 19th Euromicro conference on real-time systems (ECRTS’07) (pp. 125–135). https://doi.org/10.1109/ECRTS.2007.82. es_ES
dc.description.references Lin, Q., & Tian, J. (2011). Minimum-energy-cost algorithm based on superframe adaptation control. In 2011 IEEE international conference on communications (ICC) (pp. 1–5). https://doi.org/10.1109/icc.2011.5962445. es_ES
dc.description.references Moravejosharieh, A. Mitigating the impact of mutual interference in IEEE 802.15.4-based wireless body sensor networks. https://ir.canterbury.ac.nz/handle/10092/12380. Accessed Feb 2016. es_ES
dc.description.references Moravejosharieh, A., & Willig, A. (2015). Frequency-adaptive approach in IEEE 802.15.4 wireless body sensor networks: Continuous-assessment or periodic-assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19–34. https://doi.org/10.17972/ajicta2015113. ISSN 2205-0930. es_ES
dc.description.references Moravejosharieh, A., & Yazdi, E. T. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: The need for enhancement. In 2013 IEEE 16th international conference on computational science and engineering (pp. 1226–1231). https://doi.org/10.1109/CSE.2013.182. es_ES
dc.description.references Moravejosharieh, A., Tabatabaei Yazdi, E., & Willig, A. (2013). Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: Greedy channel utilization. In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://doi.org/10.1109/ICON.2013.6781976. es_ES
dc.description.references Moravejosharieh, A., Yazdi, E. T., Willig, A., & Pawlikowski, K. (2014). Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Continuous hopping approach. In 2014 Australasian telecommunication networks and applications conference (ATNAC) (pp. 93–98). https://doi.org/10.1109/ATNAC.2014.7020880. es_ES
dc.description.references Moravejosharieh, A., Tabatabaei Yazdi, E., Pawlikowski, K., & Sirisena, H. (2015) Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: Adaptive phase-shifting approach. In 2015 international telecommunication networks and applications conference (ITNAC) (pp. 94–99). https://doi.org/10.1109/ATNAC.2015.7366795. es_ES
dc.description.references Moravejosharieh, A. H. (2017). Performance evaluation of IEEE 802.15. 4-based wireless body sensor networks: An experimental study. International Journal of Information, Communication Technology and Applications, 3(1), 15–27. es_ES
dc.description.references Moravejosharieh, A., & Ahmadi, K. (2017). Experimental evaluation of mutual interference in co-located IEEE 802.15. 4-based wireless body sensor networks. In 27th international telecommunication networks and applications conference (ITNAC), 2017 (pp. 1–6). IEEE es_ES
dc.description.references Moravejosharieh, A., & Lloret, J. (2016a). Performance evaluation of co-located IEEE 802.15. 4-based wireless body sensor networks. Annals of Telecommunications, 71(9–10), 425–440. es_ES
dc.description.references Moravejosharieh, A., & Lloret, J. (2016b). A survey of IEEE 802.15. 4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems, 29(7), 1269–1292. es_ES
dc.description.references Pediaditakis, D., Tselishchev, Y., & Boulis, A. (2010) Performance and scalability evaluation of the castalia wireless sensor network simulator. In Proceedings of the 3rd international ICST conference on simulation tools and techniques, SIMUTools ’10, Belgium, 2010 (pp. 53:1–53:6). Brussels: ICST. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ISBN 978-963-9799-87-5. https://doi.org/10.4108/ICST.SIMUTOOLS2010.8727. es_ES
dc.description.references Pešović, U., & Planinšič, P. (2017). Error probability model for IEEE 802.15.4 wireless communications in the presence of co-channel interference. Physical Communication, 25, 43–53. https://doi.org/10.1016/j.phycom.2017.08.019. ISSN 1874-4907. es_ES
dc.description.references Poe, Y., & Schmitt, B. (2009). Node deployment in large wireless sensor networks: Coverage, energy consumption, and worst-case delay. ACM Asian internet engineering conference, Aintec ’09 (pp. 77–84). New York, NY. es_ES
dc.description.references Texas Instruments. Cc2420: Single-chip 2.4 Ghz IEEE 802.15.4 compliant and zigbee ready Rf transceiver. Retrieved July, 2014, from https://www.Ti.Com/Product/Cc2420. es_ES
dc.description.references Toscano, E., & Bello, L. L. (2012). Multichannel superframe scheduling for IEEE 802.15.4 industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 8(2), 337–350. https://doi.org/10.1109/TII.2011.2166773. ISSN 1551-3203. es_ES
dc.description.references Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094. https://doi.org/10.1007/s10916-010-9571-3. ISSN 1573-689X. es_ES
dc.description.references Yazdi, E. T., Willig, A., & Pawlikowski, K. (2013) Shortening orphan time in IEEE 802.15.4: What can be gained? In 2013 19th IEEE international conference on networks (ICON) (pp. 1–6). https://doi.org/10.1109/ICON.2013.6781984. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem