- -

Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Hedo, Meritxell es_ES
dc.contributor.author Alonso-Valiente, Miquel es_ES
dc.contributor.author Vacas, Sandra es_ES
dc.contributor.author Gallego, Carolina es_ES
dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author Arbona, Vicent es_ES
dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author Navarro-Llopis, Vicente es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Urbaneja, Alberto es_ES
dc.date.accessioned 2022-11-07T16:33:59Z
dc.date.available 2022-11-07T16:33:59Z
dc.date.issued 2021-09 es_ES
dc.identifier.issn 1612-4758 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189329
dc.description.abstract [EN] Modern agricultural policies across the globe are committed to a significant reduction in chemical pesticide dependency; however, pest management strategies are still based on the use of synthetic pesticides. There is an urgent need to find new, sustainable and biorational tools for pest management programs. Plants communicate with each other and activate defense mechanisms against pests using herbivore-induced plant volatiles (HIPVs). The use of such HIPVs could be an ecologically sustainable alternative. However, as of now, there have been no comprehensive studies on HIPVs, from selection to practical use in industry production. Here, we describe the first case of an HIPV successfully implemented for pest control under commercial greenhouse conditions. In this research, tomato plants induced with (Z)-3-hexenyl propanoate [(Z)-3-HP] were less susceptible to the attack of economically important tomato pests. We designed and calibrated polymeric dispensers for the constant release of (Z)-3-HP. These dispensers maintained commercial tomato plant defenses activated for more than two months reducing herbivore pest damage without reducing plant productivity. Transcriptomic and metabolomic analyses of plants induced with (Z)-3-HP confirmed that genes involved in specialized anti-herbivore defense were up-regulated, resulting in an increased production of fatty acid-derived compounds, activation of the lipoxygenase pathway and accumulation of specific defense compounds. Our work demonstrates under commercial greenhouse conditions how the release of HIPVs as elicitors of plant defenses via designed polymeric dispensers can be successfully integrated as a new biorational and sustainable tool for pest control es_ES
dc.description.sponsorship The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness MINECO (AGL2014-55616-C3 and RTA2017-00073-00-00), by EU through the project HARNESSTOM (Horizon 2020 program; contract 101000716) and the Conselleria d'Agricultura, Pesca i Alimentacio de la Generalitat Valenciana. The authors thank Dr. Alejandro Tena (IVIA) and Alice Mockford (University of Worcester) for helpful comments on earlier versions of the manuscript and Julio Marco for letting us conduct this research in his greenhouse and for his selfless support throughout project. JLR was supported by the Spanish Ministry of Economy and Competitiveness through a "Juan de la Cierva-Formacion" grant (FJCI-2016-28601). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Pest Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Elicitors es_ES
dc.subject Pest management es_ES
dc.subject Tuta absoluta es_ES
dc.subject Predatory mirids es_ES
dc.subject Tomato es_ES
dc.title Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10340-021-01334-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/101000716/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2017-00073-00-00 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55616-C3-3-R/ES/MEJORA DE LA RESILIENCIA DEL CULTIVO MEDIANTE EL AUMENTO DE LA RESPUESTA DE DEFENSA DE LA PLANTA INDUCIDA POR LA COMUNIDAD DE ACAROS DE TETRANYCHUS URTICAE EN CITRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2016-28601/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pérez-Hedo, M.; Alonso-Valiente, M.; Vacas, S.; Gallego, C.; Pons Puig, C.; Arbona, V.; Rambla Nebot, JL.... (2021). Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. Journal of Pest Science. 94(4):1221-1235. https://doi.org/10.1007/s10340-021-01334-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10340-021-01334-x es_ES
dc.description.upvformatpinicio 1221 es_ES
dc.description.upvformatpfin 1235 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\440165 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Anfora G, Baldessari M, De Cristofaro A et al (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable ecodian sex pheromone dispensers. J Econ Entomol 101:444–450. https://doi.org/10.1093/jee/101.2.444 es_ES
dc.description.references Arimura G, Ozawa R, Shimoda T et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nat 406:512–515. https://doi.org/10.1038/35020072 es_ES
dc.description.references Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118. https://doi.org/10.1073/pnas.95.14.8113 es_ES
dc.description.references Baysal O, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753. https://doi.org/10.1111/j.1365-3059.2003.00936.x es_ES
dc.description.references Biondi A, Desneux N (2019) Special issue on Tuta absoluta: recent advances in management methods against the background of an ongoing worldwide invasion. J Pest Sci 92:1313–1315. https://doi.org/10.1007/s10340-019-01132-6 es_ES
dc.description.references Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67. https://doi.org/10.1016/j.pbi.2014.03.009 es_ES
dc.description.references Block AK, Vaughan MM, Schmelz EA, Christensen SA (2019) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249:21–30. https://doi.org/10.1007/s00425-018-2999-2 es_ES
dc.description.references Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 es_ES
dc.description.references Bouagga S, Urbaneja A, Depalo L et al (2020) Zoophytophagous predator-induced defences restrict accumulation of the tomato spotted wilt virus. Pest Manag Sci 76:561–567. https://doi.org/10.1002/ps.5547 es_ES
dc.description.references Bouagga S, Urbaneja A, Rambla JL et al (2018) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296. https://doi.org/10.1002/ps.4838 es_ES
dc.description.references Bruce TJA, Matthes MC, Chamberlain K et al (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558. https://doi.org/10.1073/pnas.0710305105 es_ES
dc.description.references Caarls L, Elberse J, Awwanah M et al (2017) Arabidopsis Jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci USA 114:6388–6393. https://doi.org/10.1073/pnas.1701101114 es_ES
dc.description.references Cáceres LA, Lakshminarayan S, Yeung KKC et al (2016) Repellent and attractive effects of α-, β-, and Dihydro-β-Ionone to generalist and specialist Herbivores. J Chem Ecol 42:107–117. https://doi.org/10.1007/s10886-016-0669-z es_ES
dc.description.references Calvo-Agudo M, González-Cabrera J, Picó Y et al (2019) Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 116:16817–16822. https://doi.org/10.1073/pnas.1904298116 es_ES
dc.description.references Choh Y, Takabayashi J (2006) Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 32:2073–2077 es_ES
dc.description.references De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230. https://doi.org/10.1023/B:JOEC.0000048784.79031.5e es_ES
dc.description.references Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.” Trends Plant Sci 15:167–175. https://doi.org/10.1016/j.tplants.2009.12.002 es_ES
dc.description.references Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660. https://doi.org/10.1146/annurev-arplant-042817-040248 es_ES
dc.description.references Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37 es_ES
dc.description.references Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207 es_ES
dc.description.references Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785. https://doi.org/10.1073/pnas.0308037100 es_ES
dc.description.references Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273. https://doi.org/10.1038/ncomms7273 es_ES
dc.description.references Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochem 61:545–554. https://doi.org/10.1016/S0031-9422(02)00240-6 es_ES
dc.description.references Fonseca S, Chini A, Hamberg M et al (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350. https://doi.org/10.1038/nchembio.161 es_ES
dc.description.references Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: Getting ready for a different battle. Plant Physiol 146:818–824. https://doi.org/10.1104/pp.107.113027 es_ES
dc.description.references Gadino AN, Walton VM, Jc L (2012) Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol Control 63:48–55. https://doi.org/10.1016/j.biocontrol.2012.06.006 es_ES
dc.description.references Gika HG, Theodoridis GA, Vrhovsek U, Mattivi F (2012) Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1259:121–127. https://doi.org/10.1016/j.chroma.2012.02.010 es_ES
dc.description.references Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472. https://doi.org/10.1073/pnas.0610266104 es_ES
dc.description.references Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272. https://doi.org/10.1016/j.tplants.2008.03.005 es_ES
dc.description.references Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826. https://doi.org/10.1111/j.1365-313X.2006.02913.x es_ES
dc.description.references Hoffmann T, Kurtzer R, Skowranek K et al (2011) Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metab Eng 13:527–531. https://doi.org/10.1016/j.ymben.2011.06.002 es_ES
dc.description.references Howe GA, Lee GI, Itoh A et al (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724. https://doi.org/10.1104/pp.123.2.711 es_ES
dc.description.references Hussain M, Debnath B, Qasim M et al (2019) Role of saponins in plant defense against specialist herbivores. Mol. https://doi.org/10.3390/molecules24112067 es_ES
dc.description.references James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982. https://doi.org/10.1603/0046-225X-32.5.977 es_ES
dc.description.references James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495. https://doi.org/10.1007/s10886-005-2020-y es_ES
dc.description.references James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f es_ES
dc.description.references Johnson AC, Jin X, Nakada N, Sumpter JP (2020) Learning from the past and considering the future of chemicals in the environment. Sci 367:384–387. https://doi.org/10.1126/science.aay6637 es_ES
dc.description.references Kessler A (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Sci 291:2141–2144. https://doi.org/10.1126/science.291.5511.2141 es_ES
dc.description.references Knight A, Light D, Chebny V (2012) Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae). Environ Entomol 41:399–406. https://doi.org/10.1603/EN11309 es_ES
dc.description.references López-Gresa MP, Payá C, Ozáez M et al (2018) A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.01855 es_ES
dc.description.references Lunkenbein S, Coiner H, De Vos CHR et al (2006) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 54:2145–2153. https://doi.org/10.1021/jf052574z es_ES
dc.description.references Martinez-Medina A, Flors V, Heil M et al (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822. https://doi.org/10.1016/j.tplants.2016.07.009 es_ES
dc.description.references Mokany K, Ferrier S, Harwood TD et al (2020) Reconciling global priorities for conserving biodiversity habitat. Proc Natl Acad Sci USA 117:9906–9911. https://doi.org/10.1073/pnas.1918373117 es_ES
dc.description.references Muñoz-Pallares J, Corma A, Primo J, Primo-Yufera E (2001) Zeolites as pheromone dispensers. J Agric Food Chem 49:4801–4807. https://doi.org/10.1021/jf010223o es_ES
dc.description.references Naoumkina MA, Zhao Q, Gallego-Giraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846. https://doi.org/10.1111/j.1364-3703.2010.00648.x es_ES
dc.description.references Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210. https://doi.org/10.3390/ijms17081210 es_ES
dc.description.references Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Heal 4:1–8. https://doi.org/10.3389/fpubh.2016.00148 es_ES
dc.description.references Pare PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nat 385:30–31 es_ES
dc.description.references Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against Insect Herbivores by releasing greater amounts of a variety. Plant Physiol 121:325–331 es_ES
dc.description.references Perez-Fons L, Bohorquez-Chaux A, Irigoyen ML et al (2019) A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biol 19:518. https://doi.org/10.1186/s12870-019-2107-1 es_ES
dc.description.references Pérez-Hedo M, Alonso-Valiente M, Vacas S, et al (2021) Eliciting tomato plant defenses by exposure to HIPVs. Entomol Gen (In press) es_ES
dc.description.references Pérez-Hedo M, Arias-Sanguino ÁM, Urbaneja A (2018a) Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01419 es_ES
dc.description.references Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018b) Biological activity and specificity of Miridae-induced plant volatiles. Biocontrol 63:203–213. https://doi.org/10.1007/s10526-017-9854-4 es_ES
dc.description.references Pérez-Hedo M, Riahi C, Urbaneja A (2020) Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag Sci. https://doi.org/10.1002/ps.6043 es_ES
dc.description.references Pérez-Hedo M, Suay R, Alonso M et al (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127. https://doi.org/10.1016/j.cropro.2016.11.001 es_ES
dc.description.references Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA et al (2015) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554. https://doi.org/10.1007/s10340-014-0640-0 es_ES
dc.description.references Pertea M, Kim D, Pertea GM et al (2016) RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. https://doi.org/10.1038/nprot.2016-095 es_ES
dc.description.references Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122 es_ES
dc.description.references Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push–pull farming systems. Curr Opin Biotechnol 26:125–132. https://doi.org/10.1016/j.copbio.2013.12.006 es_ES
dc.description.references Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Sci 360:987–992. https://doi.org/10.1126/science.aaq0216 es_ES
dc.description.references Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Sci. https://doi.org/10.1126/science.aav0294 es_ES
dc.description.references Research and Markets (2020) World-Tomato-Market Analysis, Forecast, Size, Trends and Insights. URL: https://www.researchandmarkets.com/reports/4701312/world-tomato-market-analysis-forecast-size. Accessed 20 Sep 2020 es_ES
dc.description.references Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573–585. https://doi.org/10.1007/s10886-017-0856-6 es_ES
dc.description.references Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774. https://doi.org/10.1105/tpc.114.130096 es_ES
dc.description.references Schuman MC, Meldau S, Gaquerel E et al (2018) The active jasmonate JA-Ile regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front Plant Sci 9:787. https://doi.org/10.3389/fpls.2018.00787 es_ES
dc.description.references Suza WP, Staswick PE (2008) The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta 227:1221–1232. https://doi.org/10.1007/s00425-008-0694-4 es_ES
dc.description.references Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes–common constituents of floral and herbivore-induced plant volatile bouquets. Phytochem 72:1635–1646. https://doi.org/10.1016/j.phytochem.2011.01.019 es_ES
dc.description.references Ton J, D’Alessandro M, Jourdie V et al (2006) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26. https://doi.org/10.1111/j.1365-313X.2006.02935.x es_ES
dc.description.references Tortell PD (2020) Earth 2020: Science, society, and sustainability in the anthropocene. Proc Natl Acad Sci USA 117:8683–8691. https://doi.org/10.1073/pnas.2001919117 es_ES
dc.description.references Tumlinson JH, Pare PW, Lewis WJ (1999) Plant production of volatile semiochemicals in response to insect-derived elicitors. In: Novartis Foundation Symposium. Wiley Online Library, pp 95–104 es_ES
dc.description.references Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452. https://doi.org/10.1146/annurev-ento-020117-043507 es_ES
dc.description.references UE, (2009) Directive 2009/128/EC of the European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86 es_ES
dc.description.references Uefune M, Kugimiya S, Sano K, Takabayashi J (2012) Herbivore-induced plant volatiles enhance the ability of parasitic wasps to find hosts on a plant. J Appl Entomol 136:133–138. https://doi.org/10.1111/j.1439-0418.2011.01621.x es_ES
dc.description.references Urbaneja-Bernat P, Mollá O, Alonso M et al (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167. https://doi.org/10.1111/jen.12151 es_ES
dc.description.references Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751. https://doi.org/10.1002/ps.1937 es_ES
dc.description.references van Hulten M, Pelser M, van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607. https://doi.org/10.1073/pnas.0510213103 es_ES
dc.description.references Van Poecke RMP, Dicke M (2003) Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1 Plant. Cell Environ 26:1541–1548. https://doi.org/10.1046/j.1365-3040.2003.01078.x es_ES
dc.description.references Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of Lipoxygenase3-and Jasmonate-resistant4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol 146:904–915. https://doi.org/10.1104/pp.107.109264 es_ES
dc.description.references War AR, Paulraj MG, Ahmad T et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663 es_ES
dc.description.references Weissenberg M, Levy A, Svoboda JA, Ishaaya I (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochem 47:203–209. https://doi.org/10.1016/S0031-9422(97)00565-7 es_ES
dc.description.references Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522. https://doi.org/10.1146/annurev.ento.53.103106.093323 es_ES
dc.description.references Ye M, Glauser G, Lou Y et al (2019) Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31:687–698. https://doi.org/10.1105/tpc.18.00569 es_ES
dc.description.references Zhang NX, Messelink GJ, Alba JM et al (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113. https://doi.org/10.1007/s00442-017-4000-7 es_ES
dc.description.references Zhang NX, van Wieringen D, Messelink GJ, Janssen A (2019) Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. J Pest Sci 92:737–745. https://doi.org/10.1007/s10340-018-1036-3 es_ES
dc.description.references Zhang P, Zhao C, Ye Z, Yu X (2020) Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. Pest Manag Sci 76:1893–1901. https://doi.org/10.1002/ps.5720 es_ES
dc.description.references Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206. https://doi.org/10.1038/nplants.2015.206 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem