Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Hedo, Meritxell | es_ES |
dc.contributor.author | Alonso-Valiente, Miquel | es_ES |
dc.contributor.author | Vacas, Sandra | es_ES |
dc.contributor.author | Gallego, Carolina | es_ES |
dc.contributor.author | Pons Puig, Clara | es_ES |
dc.contributor.author | Arbona, Vicent | es_ES |
dc.contributor.author | Rambla Nebot, Jose Luis | es_ES |
dc.contributor.author | Navarro-Llopis, Vicente | es_ES |
dc.contributor.author | GRANELL RICHART, ANTONIO | es_ES |
dc.contributor.author | Urbaneja, Alberto | es_ES |
dc.date.accessioned | 2022-11-07T16:33:59Z | |
dc.date.available | 2022-11-07T16:33:59Z | |
dc.date.issued | 2021-09 | es_ES |
dc.identifier.issn | 1612-4758 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189329 | |
dc.description.abstract | [EN] Modern agricultural policies across the globe are committed to a significant reduction in chemical pesticide dependency; however, pest management strategies are still based on the use of synthetic pesticides. There is an urgent need to find new, sustainable and biorational tools for pest management programs. Plants communicate with each other and activate defense mechanisms against pests using herbivore-induced plant volatiles (HIPVs). The use of such HIPVs could be an ecologically sustainable alternative. However, as of now, there have been no comprehensive studies on HIPVs, from selection to practical use in industry production. Here, we describe the first case of an HIPV successfully implemented for pest control under commercial greenhouse conditions. In this research, tomato plants induced with (Z)-3-hexenyl propanoate [(Z)-3-HP] were less susceptible to the attack of economically important tomato pests. We designed and calibrated polymeric dispensers for the constant release of (Z)-3-HP. These dispensers maintained commercial tomato plant defenses activated for more than two months reducing herbivore pest damage without reducing plant productivity. Transcriptomic and metabolomic analyses of plants induced with (Z)-3-HP confirmed that genes involved in specialized anti-herbivore defense were up-regulated, resulting in an increased production of fatty acid-derived compounds, activation of the lipoxygenase pathway and accumulation of specific defense compounds. Our work demonstrates under commercial greenhouse conditions how the release of HIPVs as elicitors of plant defenses via designed polymeric dispensers can be successfully integrated as a new biorational and sustainable tool for pest control | es_ES |
dc.description.sponsorship | The research leading to these results was partially funded by the Spanish Ministry of Economy and Competitiveness MINECO (AGL2014-55616-C3 and RTA2017-00073-00-00), by EU through the project HARNESSTOM (Horizon 2020 program; contract 101000716) and the Conselleria d'Agricultura, Pesca i Alimentacio de la Generalitat Valenciana. The authors thank Dr. Alejandro Tena (IVIA) and Alice Mockford (University of Worcester) for helpful comments on earlier versions of the manuscript and Julio Marco for letting us conduct this research in his greenhouse and for his selfless support throughout project. JLR was supported by the Spanish Ministry of Economy and Competitiveness through a "Juan de la Cierva-Formacion" grant (FJCI-2016-28601). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Pest Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Elicitors | es_ES |
dc.subject | Pest management | es_ES |
dc.subject | Tuta absoluta | es_ES |
dc.subject | Predatory mirids | es_ES |
dc.subject | Tomato | es_ES |
dc.title | Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10340-021-01334-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101000716/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2017-00073-00-00 / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-55616-C3-3-R/ES/MEJORA DE LA RESILIENCIA DEL CULTIVO MEDIANTE EL AUMENTO DE LA RESPUESTA DE DEFENSA DE LA PLANTA INDUCIDA POR LA COMUNIDAD DE ACAROS DE TETRANYCHUS URTICAE EN CITRICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FJCI-2016-28601/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Pérez-Hedo, M.; Alonso-Valiente, M.; Vacas, S.; Gallego, C.; Pons Puig, C.; Arbona, V.; Rambla Nebot, JL.... (2021). Plant exposure to herbivore-induced plant volatiles: a sustainable approach through eliciting plant defenses. Journal of Pest Science. 94(4):1221-1235. https://doi.org/10.1007/s10340-021-01334-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10340-021-01334-x | es_ES |
dc.description.upvformatpinicio | 1221 | es_ES |
dc.description.upvformatpfin | 1235 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 94 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\440165 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Anfora G, Baldessari M, De Cristofaro A et al (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable ecodian sex pheromone dispensers. J Econ Entomol 101:444–450. https://doi.org/10.1093/jee/101.2.444 | es_ES |
dc.description.references | Arimura G, Ozawa R, Shimoda T et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nat 406:512–515. https://doi.org/10.1038/35020072 | es_ES |
dc.description.references | Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118. https://doi.org/10.1073/pnas.95.14.8113 | es_ES |
dc.description.references | Baysal O, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753. https://doi.org/10.1111/j.1365-3059.2003.00936.x | es_ES |
dc.description.references | Biondi A, Desneux N (2019) Special issue on Tuta absoluta: recent advances in management methods against the background of an ongoing worldwide invasion. J Pest Sci 92:1313–1315. https://doi.org/10.1007/s10340-019-01132-6 | es_ES |
dc.description.references | Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67. https://doi.org/10.1016/j.pbi.2014.03.009 | es_ES |
dc.description.references | Block AK, Vaughan MM, Schmelz EA, Christensen SA (2019) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249:21–30. https://doi.org/10.1007/s00425-018-2999-2 | es_ES |
dc.description.references | Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | es_ES |
dc.description.references | Bouagga S, Urbaneja A, Depalo L et al (2020) Zoophytophagous predator-induced defences restrict accumulation of the tomato spotted wilt virus. Pest Manag Sci 76:561–567. https://doi.org/10.1002/ps.5547 | es_ES |
dc.description.references | Bouagga S, Urbaneja A, Rambla JL et al (2018) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296. https://doi.org/10.1002/ps.4838 | es_ES |
dc.description.references | Bruce TJA, Matthes MC, Chamberlain K et al (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558. https://doi.org/10.1073/pnas.0710305105 | es_ES |
dc.description.references | Caarls L, Elberse J, Awwanah M et al (2017) Arabidopsis Jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci USA 114:6388–6393. https://doi.org/10.1073/pnas.1701101114 | es_ES |
dc.description.references | Cáceres LA, Lakshminarayan S, Yeung KKC et al (2016) Repellent and attractive effects of α-, β-, and Dihydro-β-Ionone to generalist and specialist Herbivores. J Chem Ecol 42:107–117. https://doi.org/10.1007/s10886-016-0669-z | es_ES |
dc.description.references | Calvo-Agudo M, González-Cabrera J, Picó Y et al (2019) Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 116:16817–16822. https://doi.org/10.1073/pnas.1904298116 | es_ES |
dc.description.references | Choh Y, Takabayashi J (2006) Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 32:2073–2077 | es_ES |
dc.description.references | De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230. https://doi.org/10.1023/B:JOEC.0000048784.79031.5e | es_ES |
dc.description.references | Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.” Trends Plant Sci 15:167–175. https://doi.org/10.1016/j.tplants.2009.12.002 | es_ES |
dc.description.references | Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660. https://doi.org/10.1146/annurev-arplant-042817-040248 | es_ES |
dc.description.references | Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37 | es_ES |
dc.description.references | Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207 | es_ES |
dc.description.references | Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785. https://doi.org/10.1073/pnas.0308037100 | es_ES |
dc.description.references | Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273. https://doi.org/10.1038/ncomms7273 | es_ES |
dc.description.references | Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochem 61:545–554. https://doi.org/10.1016/S0031-9422(02)00240-6 | es_ES |
dc.description.references | Fonseca S, Chini A, Hamberg M et al (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350. https://doi.org/10.1038/nchembio.161 | es_ES |
dc.description.references | Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: Getting ready for a different battle. Plant Physiol 146:818–824. https://doi.org/10.1104/pp.107.113027 | es_ES |
dc.description.references | Gadino AN, Walton VM, Jc L (2012) Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol Control 63:48–55. https://doi.org/10.1016/j.biocontrol.2012.06.006 | es_ES |
dc.description.references | Gika HG, Theodoridis GA, Vrhovsek U, Mattivi F (2012) Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1259:121–127. https://doi.org/10.1016/j.chroma.2012.02.010 | es_ES |
dc.description.references | Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472. https://doi.org/10.1073/pnas.0610266104 | es_ES |
dc.description.references | Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272. https://doi.org/10.1016/j.tplants.2008.03.005 | es_ES |
dc.description.references | Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826. https://doi.org/10.1111/j.1365-313X.2006.02913.x | es_ES |
dc.description.references | Hoffmann T, Kurtzer R, Skowranek K et al (2011) Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metab Eng 13:527–531. https://doi.org/10.1016/j.ymben.2011.06.002 | es_ES |
dc.description.references | Howe GA, Lee GI, Itoh A et al (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724. https://doi.org/10.1104/pp.123.2.711 | es_ES |
dc.description.references | Hussain M, Debnath B, Qasim M et al (2019) Role of saponins in plant defense against specialist herbivores. Mol. https://doi.org/10.3390/molecules24112067 | es_ES |
dc.description.references | James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982. https://doi.org/10.1603/0046-225X-32.5.977 | es_ES |
dc.description.references | James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495. https://doi.org/10.1007/s10886-005-2020-y | es_ES |
dc.description.references | James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f | es_ES |
dc.description.references | Johnson AC, Jin X, Nakada N, Sumpter JP (2020) Learning from the past and considering the future of chemicals in the environment. Sci 367:384–387. https://doi.org/10.1126/science.aay6637 | es_ES |
dc.description.references | Kessler A (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Sci 291:2141–2144. https://doi.org/10.1126/science.291.5511.2141 | es_ES |
dc.description.references | Knight A, Light D, Chebny V (2012) Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae). Environ Entomol 41:399–406. https://doi.org/10.1603/EN11309 | es_ES |
dc.description.references | López-Gresa MP, Payá C, Ozáez M et al (2018) A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.01855 | es_ES |
dc.description.references | Lunkenbein S, Coiner H, De Vos CHR et al (2006) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 54:2145–2153. https://doi.org/10.1021/jf052574z | es_ES |
dc.description.references | Martinez-Medina A, Flors V, Heil M et al (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822. https://doi.org/10.1016/j.tplants.2016.07.009 | es_ES |
dc.description.references | Mokany K, Ferrier S, Harwood TD et al (2020) Reconciling global priorities for conserving biodiversity habitat. Proc Natl Acad Sci USA 117:9906–9911. https://doi.org/10.1073/pnas.1918373117 | es_ES |
dc.description.references | Muñoz-Pallares J, Corma A, Primo J, Primo-Yufera E (2001) Zeolites as pheromone dispensers. J Agric Food Chem 49:4801–4807. https://doi.org/10.1021/jf010223o | es_ES |
dc.description.references | Naoumkina MA, Zhao Q, Gallego-Giraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846. https://doi.org/10.1111/j.1364-3703.2010.00648.x | es_ES |
dc.description.references | Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210. https://doi.org/10.3390/ijms17081210 | es_ES |
dc.description.references | Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Heal 4:1–8. https://doi.org/10.3389/fpubh.2016.00148 | es_ES |
dc.description.references | Pare PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nat 385:30–31 | es_ES |
dc.description.references | Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against Insect Herbivores by releasing greater amounts of a variety. Plant Physiol 121:325–331 | es_ES |
dc.description.references | Perez-Fons L, Bohorquez-Chaux A, Irigoyen ML et al (2019) A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biol 19:518. https://doi.org/10.1186/s12870-019-2107-1 | es_ES |
dc.description.references | Pérez-Hedo M, Alonso-Valiente M, Vacas S, et al (2021) Eliciting tomato plant defenses by exposure to HIPVs. Entomol Gen (In press) | es_ES |
dc.description.references | Pérez-Hedo M, Arias-Sanguino ÁM, Urbaneja A (2018a) Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01419 | es_ES |
dc.description.references | Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018b) Biological activity and specificity of Miridae-induced plant volatiles. Biocontrol 63:203–213. https://doi.org/10.1007/s10526-017-9854-4 | es_ES |
dc.description.references | Pérez-Hedo M, Riahi C, Urbaneja A (2020) Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag Sci. https://doi.org/10.1002/ps.6043 | es_ES |
dc.description.references | Pérez-Hedo M, Suay R, Alonso M et al (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127. https://doi.org/10.1016/j.cropro.2016.11.001 | es_ES |
dc.description.references | Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA et al (2015) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554. https://doi.org/10.1007/s10340-014-0640-0 | es_ES |
dc.description.references | Pertea M, Kim D, Pertea GM et al (2016) RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. https://doi.org/10.1038/nprot.2016-095 | es_ES |
dc.description.references | Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122 | es_ES |
dc.description.references | Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push–pull farming systems. Curr Opin Biotechnol 26:125–132. https://doi.org/10.1016/j.copbio.2013.12.006 | es_ES |
dc.description.references | Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Sci 360:987–992. https://doi.org/10.1126/science.aaq0216 | es_ES |
dc.description.references | Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Sci. https://doi.org/10.1126/science.aav0294 | es_ES |
dc.description.references | Research and Markets (2020) World-Tomato-Market Analysis, Forecast, Size, Trends and Insights. URL: https://www.researchandmarkets.com/reports/4701312/world-tomato-market-analysis-forecast-size. Accessed 20 Sep 2020 | es_ES |
dc.description.references | Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573–585. https://doi.org/10.1007/s10886-017-0856-6 | es_ES |
dc.description.references | Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774. https://doi.org/10.1105/tpc.114.130096 | es_ES |
dc.description.references | Schuman MC, Meldau S, Gaquerel E et al (2018) The active jasmonate JA-Ile regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front Plant Sci 9:787. https://doi.org/10.3389/fpls.2018.00787 | es_ES |
dc.description.references | Suza WP, Staswick PE (2008) The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta 227:1221–1232. https://doi.org/10.1007/s00425-008-0694-4 | es_ES |
dc.description.references | Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes–common constituents of floral and herbivore-induced plant volatile bouquets. Phytochem 72:1635–1646. https://doi.org/10.1016/j.phytochem.2011.01.019 | es_ES |
dc.description.references | Ton J, D’Alessandro M, Jourdie V et al (2006) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26. https://doi.org/10.1111/j.1365-313X.2006.02935.x | es_ES |
dc.description.references | Tortell PD (2020) Earth 2020: Science, society, and sustainability in the anthropocene. Proc Natl Acad Sci USA 117:8683–8691. https://doi.org/10.1073/pnas.2001919117 | es_ES |
dc.description.references | Tumlinson JH, Pare PW, Lewis WJ (1999) Plant production of volatile semiochemicals in response to insect-derived elicitors. In: Novartis Foundation Symposium. Wiley Online Library, pp 95–104 | es_ES |
dc.description.references | Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452. https://doi.org/10.1146/annurev-ento-020117-043507 | es_ES |
dc.description.references | UE, (2009) Directive 2009/128/EC of the European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86 | es_ES |
dc.description.references | Uefune M, Kugimiya S, Sano K, Takabayashi J (2012) Herbivore-induced plant volatiles enhance the ability of parasitic wasps to find hosts on a plant. J Appl Entomol 136:133–138. https://doi.org/10.1111/j.1439-0418.2011.01621.x | es_ES |
dc.description.references | Urbaneja-Bernat P, Mollá O, Alonso M et al (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167. https://doi.org/10.1111/jen.12151 | es_ES |
dc.description.references | Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751. https://doi.org/10.1002/ps.1937 | es_ES |
dc.description.references | van Hulten M, Pelser M, van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607. https://doi.org/10.1073/pnas.0510213103 | es_ES |
dc.description.references | Van Poecke RMP, Dicke M (2003) Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1 Plant. Cell Environ 26:1541–1548. https://doi.org/10.1046/j.1365-3040.2003.01078.x | es_ES |
dc.description.references | Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of Lipoxygenase3-and Jasmonate-resistant4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol 146:904–915. https://doi.org/10.1104/pp.107.109264 | es_ES |
dc.description.references | War AR, Paulraj MG, Ahmad T et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663 | es_ES |
dc.description.references | Weissenberg M, Levy A, Svoboda JA, Ishaaya I (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochem 47:203–209. https://doi.org/10.1016/S0031-9422(97)00565-7 | es_ES |
dc.description.references | Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522. https://doi.org/10.1146/annurev.ento.53.103106.093323 | es_ES |
dc.description.references | Ye M, Glauser G, Lou Y et al (2019) Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31:687–698. https://doi.org/10.1105/tpc.18.00569 | es_ES |
dc.description.references | Zhang NX, Messelink GJ, Alba JM et al (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113. https://doi.org/10.1007/s00442-017-4000-7 | es_ES |
dc.description.references | Zhang NX, van Wieringen D, Messelink GJ, Janssen A (2019) Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. J Pest Sci 92:737–745. https://doi.org/10.1007/s10340-018-1036-3 | es_ES |
dc.description.references | Zhang P, Zhao C, Ye Z, Yu X (2020) Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. Pest Manag Sci 76:1893–1901. https://doi.org/10.1002/ps.5720 | es_ES |
dc.description.references | Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206. https://doi.org/10.1038/nplants.2015.206 | es_ES |