Anfora G, Baldessari M, De Cristofaro A et al (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable ecodian sex pheromone dispensers. J Econ Entomol 101:444–450. https://doi.org/10.1093/jee/101.2.444
Arimura G, Ozawa R, Shimoda T et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nat 406:512–515. https://doi.org/10.1038/35020072
Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118. https://doi.org/10.1073/pnas.95.14.8113
[+]
Anfora G, Baldessari M, De Cristofaro A et al (2008) Control of Lobesia botrana (Lepidoptera: Tortricidae) by biodegradable ecodian sex pheromone dispensers. J Econ Entomol 101:444–450. https://doi.org/10.1093/jee/101.2.444
Arimura G, Ozawa R, Shimoda T et al (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nat 406:512–515. https://doi.org/10.1038/35020072
Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118. https://doi.org/10.1073/pnas.95.14.8113
Baysal O, Soylu EM, Soylu S (2003) Induction of defence-related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol 52:747–753. https://doi.org/10.1111/j.1365-3059.2003.00936.x
Biondi A, Desneux N (2019) Special issue on Tuta absoluta: recent advances in management methods against the background of an ongoing worldwide invasion. J Pest Sci 92:1313–1315. https://doi.org/10.1007/s10340-019-01132-6
Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67. https://doi.org/10.1016/j.pbi.2014.03.009
Block AK, Vaughan MM, Schmelz EA, Christensen SA (2019) Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). Planta 249:21–30. https://doi.org/10.1007/s00425-018-2999-2
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bouagga S, Urbaneja A, Depalo L et al (2020) Zoophytophagous predator-induced defences restrict accumulation of the tomato spotted wilt virus. Pest Manag Sci 76:561–567. https://doi.org/10.1002/ps.5547
Bouagga S, Urbaneja A, Rambla JL et al (2018) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296. https://doi.org/10.1002/ps.4838
Bruce TJA, Matthes MC, Chamberlain K et al (2008) cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci USA 105:4553–4558. https://doi.org/10.1073/pnas.0710305105
Caarls L, Elberse J, Awwanah M et al (2017) Arabidopsis Jasmonate-induced oxygenases down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci USA 114:6388–6393. https://doi.org/10.1073/pnas.1701101114
Cáceres LA, Lakshminarayan S, Yeung KKC et al (2016) Repellent and attractive effects of α-, β-, and Dihydro-β-Ionone to generalist and specialist Herbivores. J Chem Ecol 42:107–117. https://doi.org/10.1007/s10886-016-0669-z
Calvo-Agudo M, González-Cabrera J, Picó Y et al (2019) Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 116:16817–16822. https://doi.org/10.1073/pnas.1904298116
Choh Y, Takabayashi J (2006) Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 32:2073–2077
De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230. https://doi.org/10.1023/B:JOEC.0000048784.79031.5e
Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the “cry for help.” Trends Plant Sci 15:167–175. https://doi.org/10.1016/j.tplants.2009.12.002
Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660. https://doi.org/10.1146/annurev-arplant-042817-040248
Duffey SS, Stout MJ (1996) Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 32:3–37
Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210. https://doi.org/10.1093/nar/30.1.207
Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785. https://doi.org/10.1073/pnas.0308037100
Erb M, Veyrat N, Robert CAM et al (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6:6273. https://doi.org/10.1038/ncomms7273
Farag MA, Pare PW (2002) C6-green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochem 61:545–554. https://doi.org/10.1016/S0031-9422(02)00240-6
Fonseca S, Chini A, Hamberg M et al (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350. https://doi.org/10.1038/nchembio.161
Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: Getting ready for a different battle. Plant Physiol 146:818–824. https://doi.org/10.1104/pp.107.113027
Gadino AN, Walton VM, Jc L (2012) Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biol Control 63:48–55. https://doi.org/10.1016/j.biocontrol.2012.06.006
Gika HG, Theodoridis GA, Vrhovsek U, Mattivi F (2012) Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1259:121–127. https://doi.org/10.1016/j.chroma.2012.02.010
Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472. https://doi.org/10.1073/pnas.0610266104
Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272. https://doi.org/10.1016/j.tplants.2008.03.005
Hoffmann T, Kalinowski G, Schwab W (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: a rapid assay for gene function analysis. Plant J 48:818–826. https://doi.org/10.1111/j.1365-313X.2006.02913.x
Hoffmann T, Kurtzer R, Skowranek K et al (2011) Metabolic engineering in strawberry fruit uncovers a dormant biosynthetic pathway. Metab Eng 13:527–531. https://doi.org/10.1016/j.ymben.2011.06.002
Howe GA, Lee GI, Itoh A et al (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724. https://doi.org/10.1104/pp.123.2.711
Hussain M, Debnath B, Qasim M et al (2019) Role of saponins in plant defense against specialist herbivores. Mol. https://doi.org/10.3390/molecules24112067
James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982. https://doi.org/10.1603/0046-225X-32.5.977
James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495. https://doi.org/10.1007/s10886-005-2020-y
James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1628. https://doi.org/10.1023/B:JOEC.0000042072.18151.6f
Johnson AC, Jin X, Nakada N, Sumpter JP (2020) Learning from the past and considering the future of chemicals in the environment. Sci 367:384–387. https://doi.org/10.1126/science.aay6637
Kessler A (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Sci 291:2141–2144. https://doi.org/10.1126/science.291.5511.2141
Knight A, Light D, Chebny V (2012) Evaluating dispensers loaded with codlemone and pear ester for disruption of codling moth (Lepidoptera: Tortricidae). Environ Entomol 41:399–406. https://doi.org/10.1603/EN11309
López-Gresa MP, Payá C, Ozáez M et al (2018) A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.01855
Lunkenbein S, Coiner H, De Vos CHR et al (2006) Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 54:2145–2153. https://doi.org/10.1021/jf052574z
Martinez-Medina A, Flors V, Heil M et al (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822. https://doi.org/10.1016/j.tplants.2016.07.009
Mokany K, Ferrier S, Harwood TD et al (2020) Reconciling global priorities for conserving biodiversity habitat. Proc Natl Acad Sci USA 117:9906–9911. https://doi.org/10.1073/pnas.1918373117
Muñoz-Pallares J, Corma A, Primo J, Primo-Yufera E (2001) Zeolites as pheromone dispensers. J Agric Food Chem 49:4801–4807. https://doi.org/10.1021/jf010223o
Naoumkina MA, Zhao Q, Gallego-Giraldo L et al (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846. https://doi.org/10.1111/j.1364-3703.2010.00648.x
Naselli M, Urbaneja A, Siscaro G et al (2016) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210. https://doi.org/10.3390/ijms17081210
Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Heal 4:1–8. https://doi.org/10.3389/fpubh.2016.00148
Pare PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nat 385:30–31
Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against Insect Herbivores by releasing greater amounts of a variety. Plant Physiol 121:325–331
Perez-Fons L, Bohorquez-Chaux A, Irigoyen ML et al (2019) A metabolomics characterisation of natural variation in the resistance of cassava to whitefly. BMC Plant Biol 19:518. https://doi.org/10.1186/s12870-019-2107-1
Pérez-Hedo M, Alonso-Valiente M, Vacas S, et al (2021) Eliciting tomato plant defenses by exposure to HIPVs. Entomol Gen (In press)
Pérez-Hedo M, Arias-Sanguino ÁM, Urbaneja A (2018a) Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01419
Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018b) Biological activity and specificity of Miridae-induced plant volatiles. Biocontrol 63:203–213. https://doi.org/10.1007/s10526-017-9854-4
Pérez-Hedo M, Riahi C, Urbaneja A (2020) Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag Sci. https://doi.org/10.1002/ps.6043
Pérez-Hedo M, Suay R, Alonso M et al (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127. https://doi.org/10.1016/j.cropro.2016.11.001
Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA et al (2015) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554. https://doi.org/10.1007/s10340-014-0640-0
Pertea M, Kim D, Pertea GM et al (2016) RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667. https://doi.org/10.1038/nprot.2016-095
Pertea M, Pertea GM, Antonescu CM et al (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295. https://doi.org/10.1038/nbt.3122
Pickett JA, Woodcock CM, Midega CAO, Khan ZR (2014) Push–pull farming systems. Curr Opin Biotechnol 26:125–132. https://doi.org/10.1016/j.copbio.2013.12.006
Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Sci 360:987–992. https://doi.org/10.1126/science.aaq0216
Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Sci. https://doi.org/10.1126/science.aav0294
Research and Markets (2020) World-Tomato-Market Analysis, Forecast, Size, Trends and Insights. URL: https://www.researchandmarkets.com/reports/4701312/world-tomato-market-analysis-forecast-size. Accessed 20 Sep 2020
Rowen E, Gutensohn M, Dudareva N, Kaplan I (2017) Carnivore attractant or plant elicitor? multifunctional roles of methyl salicylate lures in tomato defense. J Chem Ecol 43:573–585. https://doi.org/10.1007/s10886-017-0856-6
Sawai S, Ohyama K, Yasumoto S et al (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774. https://doi.org/10.1105/tpc.114.130096
Schuman MC, Meldau S, Gaquerel E et al (2018) The active jasmonate JA-Ile regulates a specific subset of plant jasmonate-mediated resistance to herbivores in nature. Front Plant Sci 9:787. https://doi.org/10.3389/fpls.2018.00787
Suza WP, Staswick PE (2008) The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta 227:1221–1232. https://doi.org/10.1007/s00425-008-0694-4
Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes–common constituents of floral and herbivore-induced plant volatile bouquets. Phytochem 72:1635–1646. https://doi.org/10.1016/j.phytochem.2011.01.019
Ton J, D’Alessandro M, Jourdie V et al (2006) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26. https://doi.org/10.1111/j.1365-313X.2006.02935.x
Tortell PD (2020) Earth 2020: Science, society, and sustainability in the anthropocene. Proc Natl Acad Sci USA 117:8683–8691. https://doi.org/10.1073/pnas.2001919117
Tumlinson JH, Pare PW, Lewis WJ (1999) Plant production of volatile semiochemicals in response to insect-derived elicitors. In: Novartis Foundation Symposium. Wiley Online Library, pp 95–104
Turlings TCJ, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452. https://doi.org/10.1146/annurev-ento-020117-043507
UE, (2009) Directive 2009/128/EC of the European Parliament and of the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. Off J Eur Union L309:71–86
Uefune M, Kugimiya S, Sano K, Takabayashi J (2012) Herbivore-induced plant volatiles enhance the ability of parasitic wasps to find hosts on a plant. J Appl Entomol 136:133–138. https://doi.org/10.1111/j.1439-0418.2011.01621.x
Urbaneja-Bernat P, Mollá O, Alonso M et al (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167. https://doi.org/10.1111/jen.12151
Vacas S, Alfaro C, Navarro-Llopis V, Primo J (2010) Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag Sci 66:745–751. https://doi.org/10.1002/ps.1937
van Hulten M, Pelser M, van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607. https://doi.org/10.1073/pnas.0510213103
Van Poecke RMP, Dicke M (2003) Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1 Plant. Cell Environ 26:1541–1548. https://doi.org/10.1046/j.1365-3040.2003.01078.x
Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of Lipoxygenase3-and Jasmonate-resistant4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol 146:904–915. https://doi.org/10.1104/pp.107.109264
War AR, Paulraj MG, Ahmad T et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320. https://doi.org/10.4161/psb.21663
Weissenberg M, Levy A, Svoboda JA, Ishaaya I (1998) The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochem 47:203–209. https://doi.org/10.1016/S0031-9422(97)00565-7
Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522. https://doi.org/10.1146/annurev.ento.53.103106.093323
Ye M, Glauser G, Lou Y et al (2019) Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31:687–698. https://doi.org/10.1105/tpc.18.00569
Zhang NX, Messelink GJ, Alba JM et al (2018) Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 186:101–113. https://doi.org/10.1007/s00442-017-4000-7
Zhang NX, van Wieringen D, Messelink GJ, Janssen A (2019) Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. J Pest Sci 92:737–745. https://doi.org/10.1007/s10340-018-1036-3
Zhang P, Zhao C, Ye Z, Yu X (2020) Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. Pest Manag Sci 76:1893–1901. https://doi.org/10.1002/ps.5720
Züst T, Agrawal AA (2016) Mechanisms and evolution of plant resistance to aphids. Nat Plants 2:15206. https://doi.org/10.1038/nplants.2015.206
[-]