- -

Machine Learning and MADIT methodology for the fake news identification: the persuasion index

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Machine Learning and MADIT methodology for the fake news identification: the persuasion index

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Orrù, Luisa es_ES
dc.contributor.author Moro, Christian es_ES
dc.contributor.author Cuccarini, Marco es_ES
dc.contributor.author Paita, Monia es_ES
dc.contributor.author Dalla Riva, Marta Silvia es_ES
dc.contributor.author Bassi, Davide es_ES
dc.contributor.author Da San Martino, Giovanni es_ES
dc.contributor.author Navarin, Nicolò es_ES
dc.contributor.author Turchi, Gian Piero es_ES
dc.date.accessioned 2022-11-08T10:42:57Z
dc.date.available 2022-11-08T10:42:57Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189453
dc.description.abstract [EN] The phenomenon of fake news has grown concurrently with the rise of social networks that allow people to directly access news without the mediation of reliable sources. Recognizing news as fake is a difficult task for humans, and even tougher for a machine. This proposal aims to redesign the problem: from a check of truthfulness of news content, to the analysis of texts’ persuasion level. That is how information is introduced to the reader, assuming that fake news is aimed at persuading towards the reality of sense they intend to convey. M.A.D.I.T. methodology has been chosen. It is useful to describe how texts are built, overcoming the content/structure analysis level and stressing the study of Discursive Repertories: discursive modalities of reality of sense building, classified into real and fake news categories thanks to the Machine learning application. For the dataset building 7,387 news have been analysed. The results highlight different profiles of text building between the two groups: the different and typical discursive repertories allow to validate the methodological approach as a good predictor of the persuasion level of texts, not only of news, but also of information in domains such as the economic financial one (e.g. GameStop event). es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fake news es_ES
dc.subject Persuasion index es_ES
dc.subject MADIT methodology es_ES
dc.subject Machine learning es_ES
dc.subject Dialogic analysis es_ES
dc.subject Discursive configuration es_ES
dc.title Machine Learning and MADIT methodology for the fake news identification: the persuasion index es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2022.2022.15081
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Orrù, L.; Moro, C.; Cuccarini, M.; Paita, M.; Dalla Riva, MS.; Bassi, D.; Da San Martino, G.... (2022). Machine Learning and MADIT methodology for the fake news identification: the persuasion index. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 165-172. https://doi.org/10.4995/CARMA2022.2022.15081 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15081 es_ES
dc.description.upvformatpinicio 165 es_ES
dc.description.upvformatpfin 172 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15081 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem