- -

Hardy space of translated Dirichlet series

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hardy space of translated Dirichlet series

Mostrar el registro completo del ítem

Fernández Vidal, T.; Galicer, D.; Mereb, M.; Sevilla Peris, P. (2021). Hardy space of translated Dirichlet series. Mathematische Zeitschrift. 299:1103-1129. https://doi.org/10.1007/s00209-021-02700-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189476

Ficheros en el ítem

Metadatos del ítem

Título: Hardy space of translated Dirichlet series
Autor: Fernández Vidal, Tomás Galicer, Daniel Mereb, Martín Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] We study the Hardy space of translated Dirichlet series H+. It consists on those Dirichlet series Sigma a(n)n(-s) such that for some (equivalently, every) 1 <= p < infinity, the translation Sigma a(n)n(-(s+ 1/sigma)) ...[+]
Palabras clave: Dirichlet series , Hardy space , Frechet space , Composition operator , Superposition operator
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematische Zeitschrift. (issn: 0025-5874 )
DOI: 10.1007/s00209-021-02700-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00209-021-02700-2
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/ANPCyT//PICT 2018-03511/
info:eu-repo/grantAgreement/ANPCyT//PICT 2015-2299/
info:eu-repo/grantAgreement/CONICET//2018-04250/
info:eu-repo/grantAgreement/CONICET//PIP 11220130100329CO/
info:eu-repo/grantAgreement/CONICET//PIP 11220130100073CO/
info:eu-repo/grantAgreement/MECD//PRX17%2F00040/
[-]
Agradecimientos:
We would like to warmly thank Jose Bonet, Andreas Defant and Manuel Maestre for enlightening remarks and comments and fruitful discussions that improved the paper. We would also like to thank the referees for their careful ...[+]
Tipo: Artículo

References

Aleman, A., Olsen, J.F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014). https://doi.org/10.1093/imrn/rnt080

Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer, New York (1976)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002). https://doi.org/10.1007/s00605-002-0470-7 [+]
Aleman, A., Olsen, J.F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014). https://doi.org/10.1093/imrn/rnt080

Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer, New York (1976)

Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002). https://doi.org/10.1007/s00605-002-0470-7

Bayart, F., Castillo-Medina, J., García, D., Maestre, M., Sevilla-Peris, P.: Composition operators on spaces of double Dirichlet series. Rev. Mat. Complut. 34, 215–237 (2021). https://doi.org/10.1007/s13163-019-00345-8

Bayart, F., Defant, A., Frerick, L., Maestre, M., Sevilla-Peris, P.: Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Math. Ann. 368(1–2), 837–876 (2017). https://doi.org/10.1007/s00208-016-1511-1

Bonet, J.: The Fréchet Schwartz algebra of uniformly convergent Dirichlet series. Proc. Edinb. Math. Soc. (2) 61(4), 933–942 (2018). https://doi.org/10.1017/s0013091517000438

Bonet, J.: The differentiation operator in the space of uniformly convergent Dirichlet series. Math. Nachr. 293(8), 1452–1458 (2020). https://doi.org/10.1002/mana.201900211

Brevig, O.F., Perfekt, K.M., Seip, K.: Volterra operators on Hardy spaces of Dirichlet series. J. Reine Angew. Math. 754, 179–223 (2019). https://doi.org/10.1515/crelle-2016-0069

Carando, D., Marceca, F., Sevilla-Peris, P.: Hausdorff–Young-type inequalities for vector-valued Dirichlet series. Trans. Am. Math. Soc. 373(8), 5627–5652 (2020). https://doi.org/10.1090/tran/8147

Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet series and holomorphic functions in high dimensions, New Mathematical Monographs, vol. 37. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108691611

Defant, A., Pérez, A., Sevilla-Peris, P.: A note on abscissas of Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2639–2653 (2019). https://doi.org/10.1007/s13398-019-00647-y

Gordon, J., Hedenmalm, H.: The composition operators on the space of Dirichlet series with square summable coefficients. Mich. Math. J. 46(2), 313–329 (1999). https://doi.org/10.1307/mmj/1030132413

Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$. Duke Math. J. 86(1), 1–37 (1997). https://doi.org/10.1215/S0012-7094-97-08601-4

Meise, R., Vogt, D.: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors

Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)

Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962). http://projecteuclid.org/euclid.ijm/1255631807

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem