Aleman, A., Olsen, J.F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014). https://doi.org/10.1093/imrn/rnt080
Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer, New York (1976)
Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002). https://doi.org/10.1007/s00605-002-0470-7
[+]
Aleman, A., Olsen, J.F., Saksman, E.: Fourier multipliers for Hardy spaces of Dirichlet series. Int. Math. Res. Not. IMRN 16, 4368–4378 (2014). https://doi.org/10.1093/imrn/rnt080
Apostol, T.M.: Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer, New York (1976)
Bayart, F.: Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math. 136(3), 203–236 (2002). https://doi.org/10.1007/s00605-002-0470-7
Bayart, F., Castillo-Medina, J., García, D., Maestre, M., Sevilla-Peris, P.: Composition operators on spaces of double Dirichlet series. Rev. Mat. Complut. 34, 215–237 (2021). https://doi.org/10.1007/s13163-019-00345-8
Bayart, F., Defant, A., Frerick, L., Maestre, M., Sevilla-Peris, P.: Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables. Math. Ann. 368(1–2), 837–876 (2017). https://doi.org/10.1007/s00208-016-1511-1
Bonet, J.: The Fréchet Schwartz algebra of uniformly convergent Dirichlet series. Proc. Edinb. Math. Soc. (2) 61(4), 933–942 (2018). https://doi.org/10.1017/s0013091517000438
Bonet, J.: The differentiation operator in the space of uniformly convergent Dirichlet series. Math. Nachr. 293(8), 1452–1458 (2020). https://doi.org/10.1002/mana.201900211
Brevig, O.F., Perfekt, K.M., Seip, K.: Volterra operators on Hardy spaces of Dirichlet series. J. Reine Angew. Math. 754, 179–223 (2019). https://doi.org/10.1515/crelle-2016-0069
Carando, D., Marceca, F., Sevilla-Peris, P.: Hausdorff–Young-type inequalities for vector-valued Dirichlet series. Trans. Am. Math. Soc. 373(8), 5627–5652 (2020). https://doi.org/10.1090/tran/8147
Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet series and holomorphic functions in high dimensions, New Mathematical Monographs, vol. 37. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781108691611
Defant, A., Pérez, A., Sevilla-Peris, P.: A note on abscissas of Dirichlet series. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2639–2653 (2019). https://doi.org/10.1007/s13398-019-00647-y
Gordon, J., Hedenmalm, H.: The composition operators on the space of Dirichlet series with square summable coefficients. Mich. Math. J. 46(2), 313–329 (1999). https://doi.org/10.1307/mmj/1030132413
Hedenmalm, H., Lindqvist, P., Seip, K.: A Hilbert space of Dirichlet series and systems of dilated functions in $$L^2(0,1)$$. Duke Math. J. 86(1), 1–37 (1997). https://doi.org/10.1215/S0012-7094-97-08601-4
Meise, R., Vogt, D.: Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York (1997). Translated from the German by M. S. Ramanujan and revised by the authors
Queffélec, H., Queffélec, M.: Diophantine approximation and Dirichlet series, Harish-Chandra Research Institute Lecture Notes, vol. 2. Hindustan Book Agency, New Delhi (2013)
Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962). http://projecteuclid.org/euclid.ijm/1255631807
[-]