- -

Optimization model to support sustainable crop planning for reducing unfairness among farmers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization model to support sustainable crop planning for reducing unfairness among farmers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Esteso, Ana es_ES
dc.contributor.author Alemany Díaz, María Del Mar es_ES
dc.contributor.author Ortiz Bas, Ángel es_ES
dc.contributor.author Liu, Shaofeng es_ES
dc.date.accessioned 2022-11-08T19:01:33Z
dc.date.available 2022-11-08T19:01:33Z
dc.date.issued 2022-09 es_ES
dc.identifier.issn 1435-246X es_ES
dc.identifier.uri http://hdl.handle.net/10251/189479
dc.description.abstract [EN] Agri-food production must increase while food waste needs to be reduced for improving the position of farmers. To do so it is necessary to sustainably manage agri-food supply chains beginning with the crop planning decisions. Although the centralized approach has usually been adopted for this purpose, it can lead to unfair solutions due to inequitable distribution of profits among farmers causing their unwillingness to collaborate in the implementation of decisions made. To solve this, in this paper a novel centralized multi-objective mathematical programming model is proposed to support the sustainable crop planning definition for a region that jointly optimize three objectives aligned to the sustainability aspects: supply chain profits maximization (economic objective), waste minimization (environmental objective) and unfairness among farmers minimization (social objective), being the last two objectives novel in the crop planning literature. It has also shown the conflicting nature of the three objectives finding trade-offs among them. Other novelties of this proposal are: (1) anticipation of operative decisions (such as harvest, transport, sale, clearance sale, waste and unmet demand) when defining the crop planning, (2) possibility of clearing the oversupply of crops as a means of increasing the farmers' profits and reducing waste, and (3) the modelling of a agri-food supply chain characterized by the lack of intermediaries between farmers and retailers, fostering the freshest product delivery and farmers' power position. The model is solved by applying the weighted sum method concluding that the crop waste generated along the chain and the unfairness among farmers can be considerably reduced by little decreasing the optimal SC profits. es_ES
dc.description.sponsorship We acknowledge the support of the Project 691249, RUCAPS: "Enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems", funded by the European Union's research and innovation programme under the H2020 Marie Sklodowska-Curie Actions. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation info:eu-repo/grantAgreement/MECD//FPU15%2F03595/ES/FPU15%2F03595/
dc.relation.ispartof Central European Journal of Operations Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sustainability es_ES
dc.subject Crop planning es_ES
dc.subject Agri-food es_ES
dc.subject Optimization es_ES
dc.subject Unfairness es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Optimization model to support sustainable crop planning for reducing unfairness among farmers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10100-021-00751-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/691249/EU es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Esteso, A.; Alemany Díaz, MDM.; Ortiz Bas, Á.; Liu, S. (2022). Optimization model to support sustainable crop planning for reducing unfairness among farmers. Central European Journal of Operations Research. 30(3):1101-1127. https://doi.org/10.1007/s10100-021-00751-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10100-021-00751-8 es_ES
dc.description.upvformatpinicio 1101 es_ES
dc.description.upvformatpfin 1127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\443349 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Adekanmbi O, Olugbara O (2015) Multiobjective optimization of crop-mix planning using generalized differential evolution algorithm. J Agric Sci Technol 17:1103–1114 es_ES
dc.description.references Ahumada O, Villalobos JR (2011a) Operational model for planning the harvest and distribution of perishable agricultural products. Int J Prod Econ 133:677–687. https://doi.org/10.1016/j.ijpe.2011.05.015 es_ES
dc.description.references Ahumada O, Villalobos JR (2011b) A tactical model for planning the production and distribution of fresh produce. Ann Oper Res 190:339–358. https://doi.org/10.1007/s10479-009-0614-4 es_ES
dc.description.references Ahumada O, Villalobos JR, Mason AN (2012) Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agric Syst 112:17–26. https://doi.org/10.1016/j.agsy.2012.06.002 es_ES
dc.description.references Ajmal MM, Khan M, Hussain M, Helo P (2018) Conceptualizing and incorporating social sustainability in the business world. Int J Sustain Dev World Ecol 25:327–339. https://doi.org/10.1080/13504509.2017.1408714 es_ES
dc.description.references Albornoz VM, Sáez JL, Véliz MI (2017) Delineation of rectangular management zones and crop planning under uncertainty in the soil properties. Commun Comput Inf Sci 695:117–131. https://doi.org/10.1007/978-3-319-53982-9_7 es_ES
dc.description.references Albornoz VM, Véliz MI, Ortega R, Ortíz-Araya V (2020) Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty. Ann Oper Res 286:617–634. https://doi.org/10.1007/s10479-019-03198-y es_ES
dc.description.references Alfandari L, Lemalade JL, Nagih A, Plateau G (2011) A MIP flow model for crop-rotation planning in a context of forest sustainable development. Ann Oper Res 190:149–164. https://doi.org/10.1007/s10479-009-0553-0 es_ES
dc.description.references Alfandari L, Plateau A, Schepler X (2015) A branch-and-price-and-cut approach for sustainable crop rotation planning. Eur J Oper Res 241:872–879. https://doi.org/10.1016/j.ejor.2014.09.066 es_ES
dc.description.references Anastasiadis F, Tsolakis N, Srai J (2018) Digital technologies towards resource efficiency in the agrifood sector: key challenges in developing countries. Sustainability 10:4850. https://doi.org/10.3390/su10124850 es_ES
dc.description.references Azevedo S, Silva M, Matias J, Dias G (2018) The influence of collaboration initiatives on the sustainability of the cashew supply chain. Sustainability 10:2075. https://doi.org/10.3390/su10062075 es_ES
dc.description.references Banasik A, Bloemhof-Ruwaard JM, Kanellopoulos A et al (2018) Multi-criteria decision making approaches for green supply chains: a review. Flex Serv Manuf J 30:366–396. https://doi.org/10.1007/s10696-016-9263-5 es_ES
dc.description.references Blanco V, Carpente L, Hinojosa Y, Puerto J (2010) Planning for agricultural forage harvesters and trucks: model, heuristics, and case study. Netw Spat Econ 10:321–343. https://doi.org/10.1007/s11067-009-9120-0 es_ES
dc.description.references Catalá LP, Durand GA, Blanco AM, Bandoni JA (2013) Mathematical model for strategic planning optimization in the pome fruit industry. Agric Syst 115:63–71. https://doi.org/10.1016/j.agsy.2012.09.010 es_ES
dc.description.references Cid-Garcia NM, Ibarra-Rojas OJ (2019) An integrated approach for the rectangular delineation of management zones and the crop planning problems. Comput Electron Agric 164:104925. https://doi.org/10.1016/j.compag.2019.104925 es_ES
dc.description.references Cid-Garcia NM, Bravo-Lozano AG, Rios-Solis YA (2014) A crop planning and real-time irrigation method based on site-specific management zones and linear programming. Comput Electron Agric 107:20–28. https://doi.org/10.1016/j.compag.2014.06.002 es_ES
dc.description.references Darby-Dowman K, Barker S, Audsley E, Parsons D (2000) A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. J Oper Res Soc 51:83–89. https://doi.org/10.1057/palgrave.jors.2600858 es_ES
dc.description.references Djekic I, Sanjuán N, Clemente G et al (2018) Review on environmental models in the food chain—current status and future perspectives. J Clean Prod 176:1012–1025. https://doi.org/10.1016/j.jclepro.2017.11.241 es_ES
dc.description.references dos Santos LMR, Costa AM, Arenales MN, Santos RHS (2010) Sustainable vegetable crop supply problem. Eur J Oper Res 204:639–647. https://doi.org/10.1016/j.ejor.2009.11.026 es_ES
dc.description.references Dury J, Schaller N, Garcia F et al (2012) Models to support cropping plan and crop rotation decisions: a review. Agron Sustain Dev 32:567–580. https://doi.org/10.1007/s13593-011-0037-x es_ES
dc.description.references Ertogral K, Wu SD (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940. https://doi.org/10.1080/07408170008967451 es_ES
dc.description.references Esteso A, Alemany MME, Ortiz A (2018a) Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int J Prod Res 56:4418–4446. https://doi.org/10.1080/00207543.2018.1447706 es_ES
dc.description.references Esteso A, Alemany MME, Ortiz Á, Peidro D (2018b) A multi-objective model for inventory and planned production reassignment to committed orders with homogeneity requirements. Comput Ind Eng 124:180–194. https://doi.org/10.1016/j.cie.2018.07.025 es_ES
dc.description.references European Commission (2018) Key policy objectives of the future CAP. https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap/key-policy-objectives-future-cap_en#nineobjectives. Accessed 18 July 2020 es_ES
dc.description.references Fang Y, Jiang Y, Sun L, Han X (2018) Design of green cold chain networks for imported fresh agri-products in belt and road development. Sustainability 10:1572. https://doi.org/10.3390/su10051572 es_ES
dc.description.references FAO Sustainability Pathways. http://www.fao.org/nr/sustainability/food-loss-and-waste/en/. Accessed 29 Jan 2020 es_ES
dc.description.references Filippi C, Mansini R, Stevanato E (2017) Mixed integer linear programming models for optimal crop selection. Comput Oper Res 81:26–39. https://doi.org/10.1016/j.cor.2016.12.004 es_ES
dc.description.references Flores H, Villalobos JR (2018) A modeling framework for the strategic design of local fresh-food systems. Agric Syst 161:1–15. https://doi.org/10.1016/j.agsy.2017.12.001 es_ES
dc.description.references Flores H, Villalobos JR, Ahumada O et al (2019) Use of supply chain planning tools for efficiently placing small farmers into high-value, vegetable markets. Comput Electron Agric 157:205–217. https://doi.org/10.1016/j.compag.2018.12.050 es_ES
dc.description.references Forrester RJ, Rodriguez M, Forrester R, Rodriguez M (2018) An integer programming approach to crop rotation planning at an organic farm. UMAP J 38:5–25 es_ES
dc.description.references Hasuike T, Kashima T, Matsumoto S (2018) Multiobjective crop planning considering optimal matching between retailers and farmers with contract. J Adv Mech Des Syst Manuf 12:1–16. https://doi.org/10.1299/jamdsm.2018jamdsm0071 es_ES
dc.description.references Hong Y, Berentsen P, Heerink N et al (2019) The future of intercropping under growing resource scarcity and declining grain prices—a model analysis based on a case study in Northwest China. Agric Syst 176:102661. https://doi.org/10.1016/j.agsy.2019.102661 es_ES
dc.description.references Jarin S, Khatun MK, Shafie AA (2016) Multi-objective constrained algorithm (MCA) and non-dominated sorting genetic algorithm (NSGA-ii) for solving multi-objective crop planning problem. ARPN J Eng Appl Sci 11:4079–4086 es_ES
dc.description.references Jaya Brindha G, Gopi ES (2019) Maximizing profits in crop planning using socio evolution and learning optimization. Stud Comput Intell 828:151–174. https://doi.org/10.1007/978-981-13-6569-0_8 es_ES
dc.description.references Jonkman J, Barbosa-Póvoa AP, Bloemhof JM (2019) Integrating harvesting decisions in the design of agro-food supply chains. Eur J Oper Res 276:247–258. https://doi.org/10.1016/j.ejor.2018.12.024 es_ES
dc.description.references Li J, Rodriguez D, Zhang D, Ma K (2015) Crop rotation model for contract farming with constraints on similar profits. Comput Electron Agric 119:12–18. https://doi.org/10.1016/j.compag.2015.10.002 es_ES
dc.description.references Mason AN, Villalobos JR (2015) Coordination of perishable crop production using auction mechanisms. Agric Syst 138:18–30. https://doi.org/10.1016/j.agsy.2015.04.008 es_ES
dc.description.references Mavrotas G (2009) Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl Math Comput 213:455–465. https://doi.org/10.1016/j.amc.2009.03.037 es_ES
dc.description.references Mellaku MT, Reynolds TW, Woldeamanuel T (2018) Linear programming-based cropland allocation to enhance performance of smallholder crop production: a pilot study in Abaro Kebele, Ethiopia. Resources. https://doi.org/10.3390/resources7040076 es_ES
dc.description.references Moon I, Jeong YJ, Saha S (2018) Investment and coordination decisions in a supply chain of fresh agricultural products. Oper Res. https://doi.org/10.1007/s12351-018-0411-4 es_ES
dc.description.references Najafabadi MM, Ziaee S, Nikouei A, Ahmadpour Borazjani M (2019) Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: a case study. Agric Syst 173:218–232. https://doi.org/10.1016/j.agsy.2019.02.006 es_ES
dc.description.references Nguyen T-D, Venkatadri U, Nguyen-Quang T et al (2019) Optimization model for fresh fruit supply chains: case-study of dragon fruit in Vietnam. AgriEngineering 2:1–26. https://doi.org/10.3390/agriengineering2010001 es_ES
dc.description.references Pérez-Mesa JC, Piedra-Muñoz L, García-Barranco MC, Giagnocavo C (2019) Response of fresh food suppliers to sustainable supply chain management of large European retailers. Sustainability 11:3885. https://doi.org/10.3390/su11143885 es_ES
dc.description.references Pourhejazy P, Kwon O (2016) The new generation of operations research methods in supply chain optimization: a review. Sustainability 8:1033. https://doi.org/10.3390/su8101033 es_ES
dc.description.references Prima Dania WA, Xing K, Amer Y (2018) Collaboration behavioural factors for sustainable agri-food supply chains: a systematic review. J Clean Prod 186:851–864. https://doi.org/10.1016/j.jclepro.2018.03.148 es_ES
dc.description.references Radulescu M, Radulescu CZ (2013) Simulation and optimization for crop planning under risk. In: Proceedings—8th EUROSIM congr model simulation, EUROSIM 2013, pp 409–414. https://doi.org/10.1109/EUROSIM.2013.117 es_ES
dc.description.references Rǎdulescu M, Zbǎganu G, Rǎdulescu CZ (2008) Crop planning in the presence of production quotas (invited paper). In: Proceedings—UKSim 10th Int Conf Comput Model Simulation, EUROSIM/UKSim2008, pp 549–554. https://doi.org/10.1109/UKSIM.2008.40 es_ES
dc.description.references Rǎdulescu M, Rǎdulescu CZ, Zbǎganu G (2014) A portfolio theory approach to crop planning under environmental constraints. Ann Oper Res 219:243–264. https://doi.org/10.1007/s10479-011-0902-7 es_ES
dc.description.references Ren C, Li Z, Zhang H (2019) Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. J Clean Prod 210:12–24. https://doi.org/10.1016/j.jclepro.2018.10.348 es_ES
dc.description.references RUC-APS (2016) Enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: Proj. 691249 funded by Eur. Union’s Res. Innov. Program. under H2020 Marie Skłodowska-Curie Actions. www.ruc-aps.eu es_ES
dc.description.references Santos LMR, Munari P, Costa AM, Santos RHS (2015) A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. Eur J Oper Res 245:581–590. https://doi.org/10.1016/j.ejor.2015.03.035 es_ES
dc.description.references Sarker RA, Quaddus MA (2002) Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Comput Ind Eng 42:541–553. https://doi.org/10.1016/S0360-8352(02)00022-0 es_ES
dc.description.references Sarker R, Ray T (2009) An improved evolutionary algorithm for solving multi-objective crop planning models. Comput Electron Agric 68:191–199. https://doi.org/10.1016/j.compag.2009.06.002 es_ES
dc.description.references Sebatjane M, Adetunji O (2021) Optimal lot-sizing and shipment decisions in a three-echelon supply chain for growing items with inventory level- and expiration date-dependent demand. Appl Math Model 90:1204–1225. https://doi.org/10.1016/j.apm.2020.10.021 es_ES
dc.description.references Seuring S, Müller M (2008) From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod 16:1699–1710. https://doi.org/10.1016/j.jclepro.2008.04.020 es_ES
dc.description.references Stadtler H (2009) A framework for collaborative planning and state-of-the-art. Or Spectr 31:5–30. https://doi.org/10.1007/s00291-007-0104-5 es_ES
dc.description.references Suthar RG, Barrera JI, Judge J et al (2019) Modeling postharvest loss and water and energy use in Florida tomato operations. Postharvest Biol Technol 153:61–68. https://doi.org/10.1016/j.postharvbio.2019.03.004 es_ES
dc.description.references Tan Q, Zhang S, Li R (2017) Optimal use of agricultural water and land resources through reconfiguring crop planting structure under socioeconomic and ecological objectives. Water (switzerland). https://doi.org/10.3390/w9070488 es_ES
dc.description.references United Nations (2019) The sustainable development goals report 2019. United Nations Publ issued by Dep Econ Soc Aff 64 es_ES
dc.description.references Villa G, Adenso-Díaz B, Lozano S (2019) An analysis of geographic and product diversification in crop planning strategy. Agric Syst 174:117–124. https://doi.org/10.1016/j.agsy.2019.05.006 es_ES
dc.description.references Zaraté P, Alemany M, del Pino M, et al (2019) How to support group decision making in horticulture: an approach based on the combination of a centralized mathematical model and a group decision support system. In: Lecture Notes in Business Information Processing, pp 83–94 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem