- -

Text mining methods for innovation studies: limits and future perspectives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Text mining methods for innovation studies: limits and future perspectives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cruciata, Pietro es_ES
dc.contributor.author Pulizzotto, Davide es_ES
dc.contributor.author Beaudry, Catherine es_ES
dc.date.accessioned 2022-11-09T08:24:33Z
dc.date.available 2022-11-09T08:24:33Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189496
dc.description.abstract [EN] This study offers alternative and promising approaches to word count methods, largely used to develop innovation indicators from unstructured text. We propose a method based on Information Retrieval (IR) and word-embedding models to tackle the semantic ellipsis, one of the main issues of word count methods. We test our IR model by investigating the concept of collaboration and comparing our approach with a baseline corresponding to the keyword search. To ensure the best performances, we use several ways to represent queries and documents in a vector space and three pre-trained word-embedding models. The results prove that our approach can alleviate the semantic ellipsis problem. Indeed, the IR model developed outperforms the classical keyword search in terms of F1-score and Recall. Moreover, we create a combined method that achieves the highest F1-score. These preliminary results can facilitate the creation of reliable innovation indicators from unstructured textual data substituting or complementing survey-based questionnaires. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Text mining es_ES
dc.subject Natural Language Processing es_ES
dc.subject Information Retrieval es_ES
dc.subject Innovation measures es_ES
dc.title Text mining methods for innovation studies: limits and future perspectives es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2022.2022.15076
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cruciata, P.; Pulizzotto, D.; Beaudry, C. (2022). Text mining methods for innovation studies: limits and future perspectives. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 147-154. https://doi.org/10.4995/CARMA2022.2022.15076 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15076 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 154 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15076 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem