- -

Probing the edge between integrability and quantum chaos in interacting few-atom systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probing the edge between integrability and quantum chaos in interacting few-atom systems

Mostrar el registro completo del ítem

Fogarty, T.; Garcia March, MA.; Santos, LF.; Harshman, N. (2021). Probing the edge between integrability and quantum chaos in interacting few-atom systems. Quantum. 5:1-22. https://doi.org/10.22331/q-2021-06-29-486

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189535

Ficheros en el ítem

Metadatos del ítem

Título: Probing the edge between integrability and quantum chaos in interacting few-atom systems
Autor: Fogarty, Thomas Garcia March, Miguel Angel Santos, Lea F. Harshman, N.L.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Quantum. (eissn: 2521-327X )
DOI: 10.22331/q-2021-06-29-486
Editorial:
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Versión del editor: https://doi.org/10.22331/q-2021-06-29-486
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106901GB-I00/ES/PHYSICS OF NEW CHALLENGES/
info:eu-repo/grantAgreement/ //BEAGAL18%2F00203//AYUDA BEATRIZ GALINDO MODALIDAD JUNIOR-GARCIA MARCH/
info:eu-repo/grantAgreement/NSF//DMR-1936006/
info:eu-repo/grantAgreement/MEXT//21K13856/
Agradecimientos:
The authors thank M. Olshanii, T. Busch, A. Fabra and M. Boubakour for insights on integrability and conversations about chaos. TF acknowledges support from JSPS KAKENHI-21K13856 and the Okinawa Institute of Science and ...[+]
Tipo: Artículo

References

Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, May 2019. 10.1103/RevModPhys.91.021001. URL https://link.aps.org/doi/10.1103/RevModPhys.91.021001.

Y. Alhassid and R. D. Levine. Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A, 46: 4650–4653, 1992. 10.1103/PhysRevA.46.4650. URL https://link.aps.org/doi/10.1103/PhysRevA.46.4650.

G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini. Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional bose gases. Phys. Rev. Lett., 95: 190407, Nov 2005. 10.1103/PhysRevLett.95.190407. URL https://link.aps.org/doi/10.1103/PhysRevLett.95.190407. [+]
Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, May 2019. 10.1103/RevModPhys.91.021001. URL https://link.aps.org/doi/10.1103/RevModPhys.91.021001.

Y. Alhassid and R. D. Levine. Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A, 46: 4650–4653, 1992. 10.1103/PhysRevA.46.4650. URL https://link.aps.org/doi/10.1103/PhysRevA.46.4650.

G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini. Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional bose gases. Phys. Rev. Lett., 95: 190407, Nov 2005. 10.1103/PhysRevLett.95.190407. URL https://link.aps.org/doi/10.1103/PhysRevLett.95.190407.

Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354 (6315): 1021–1023, 2016. 10.1126/science.aah3778.

M T Batchelor, M Bortz, X W Guan, and N Oelkers. Evidence for the super Tonks-Girardeau gas. J. Stat. Mech., 2005 (10): L10001–L10001, oct 2005. 10.1088/1742-5468/2005/10/l10001. URL https://doi.org/10.1088/1742-5468/2005/10/l10001.

J. H. Becher, E. Sindici, R. Klemt, S. Jochim, A. J. Daley, and P. M. Preiss. Measurement of identical particle entanglement and the influence of antisymmetrization. Phys. Rev. Lett., 125: 180402, Oct 2020. 10.1103/PhysRevLett.125.180402. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.180402.

Andrea Bergschneider, Vincent M Klinkhamer, Jan Hendrik Becher, Ralf Klemt, Lukas Palm, Gerhard Zürn, Selim Jochim, and Philipp M Preiss. Experimental characterization of two-particle entanglement through position and momentum correlations. Nat. Phys., 15 (7): 640–644, 2019. 10.1038/s41567-019-0508-6.

Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682): 579–584, 2017. ISSN 1476-4687. 10.1038/nature24622. URL https://doi.org/10.1038/nature24622.

M. V. Berry. Quantizing a classically ergodic system: Sinai's billiard and the KKR method. Ann. Phys., 131 (1): 163–216, January 1981. ISSN 0003-4916. 10.1016/0003-4916(81)90189-5. URL https://www.sciencedirect.com/science/article/pii/0003491681901895.

M. V. Berry and M. Tabor. Level clustering in the regular spectrum. Proc. R. Soc. Lond. A, 356: 375 – 394, 1977. 10.1098/rspa.1977.0140.

M. V. Berry and M. Wilkinson. Diabolical Points in the Spectra of Triangles. Proc. R. Soc. Lond. A, 392 (1802): 15–43, 1984. ISSN 0080-4630. 10.1098/rspa.1984.0022. URL https://www.jstor.org/stable/2397740.

B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg, and M. Žnidarič. Finite-temperature transport in one-dimensional quantum lattice models. Rev. Mod. Phys., 93: 025003, May 2021. 10.1103/RevModPhys.93.025003. URL https://link.aps.org/doi/10.1103/RevModPhys.93.025003.

Wouter Beugeling, Roderich Moessner, and Masudul Haque. Off-diagonal matrix elements of local operators in many-body quantum systems. Phys. Rev. E, 91: 012144, Jan 2015. 10.1103/PhysRevE.91.012144. URL https://link.aps.org/doi/10.1103/PhysRevE.91.012144.

Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80: 885–964, Jul 2008. 10.1103/RevModPhys.80.885. URL https://link.aps.org/doi/10.1103/RevModPhys.80.885.

D Blume. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys., 75 (4): 046401, mar 2012. 10.1088/0034-4885/75/4/046401. URL https://doi.org/10.1088/0034-4885/75/4/046401.

Doerte Blume. Jumping from two and three particles to infinitely many. Physics, 3: 74, 2010. 10.1103/Physics.3.74.

F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep., 626: 1, 2016. 10.1016/j.physrep.2016.02.005.

R. Bourgain, J. Pellegrino, A. Fuhrmanek, Y. R. P. Sortais, and A. Browaeys. Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Phys. Rev. A, 88: 023428, Aug 2013. 10.1103/PhysRevA.88.023428. URL https://link.aps.org/doi/10.1103/PhysRevA.88.023428.

Marlon Brenes, John Goold, and Marcos Rigol. Low-frequency behavior of off-diagonal matrix elements in the integrable XXZ chain and in a locally perturbed quantum-chaotic XXZ chain. Phys. Rev. B, 102: 075127, Aug 2020a. 10.1103/PhysRevB.102.075127. URL https://link.aps.org/doi/10.1103/PhysRevB.102.075127.

Marlon Brenes, Tyler LeBlond, John Goold, and Marcos Rigol. Eigenstate thermalization in a locally perturbed integrable system. Phys. Rev. Lett., 125: 070605, Aug 2020b. https://doi.org/10.1103/PhysRevLett.125.070605. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.070605.

Marlon Brenes, Silvia Pappalardi, Mark T. Mitchison, John Goold, and Alessandro Silva. Out-of-time-order correlations and the fine structure of eigenstate thermalisation. arXiv:2103.01161, 2021. URL https://arxiv.org/abs/2103.01161.

T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong. Random-matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys., 53: 385, 1981. 10.1103/RevModPhys.53.385. URL https://link.aps.org/doi/10.1103/RevModPhys.53.385.

Steve Campbell, Miguel Ángel García-March, Thomás Fogarty, and Thomas Busch. Quenching small quantum gases: Genesis of the orthogonality catastrophe. Phys. Rev. A, 90: 013617, Jul 2014. 10.1103/PhysRevA.90.013617. URL https://link.aps.org/doi/10.1103/PhysRevA.90.013617.

Marko Cetina, Michael Jag, Rianne S. Lous, Isabella Fritsche, Jook T. M. Walraven, Rudolf Grimm, Jesper Levinsen, Meera M. Parish, Richard Schmidt, Michael Knap, and Eugene Demler. Ultrafast many-body interferometry of impurities coupled to a Fermi sea. Science, 354 (6308): 96–99, 2016. ISSN 0036-8075. 10.1126/science.aaf5134.

P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch. Counting atoms using interaction blockade in an optical superlattice. Phys. Rev. Lett., 101: 090404, Aug 2008. 10.1103/PhysRevLett.101.090404. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.090404.

Aurélia Chenu, Javier Molina-Vilaplana, and Adolfo del Campo. Work statistics, Loschmidt echo and information scrambling in chaotic quantum systems. Quantum, 3: 127, March 2019. ISSN 2521-327X. 10.22331/q-2019-03-04-127. URL https://doi.org/10.22331/q-2019-03-04-127.

J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida. Chaos, complexity, and random matrices. J. High Energy Phys., 2017 (11): 48, Nov 2017. 10.1007/JHEP11(2017)048. URL https://doi.org/10.1007/JHEP11(2017)048.

L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 65 (3): 239–362, 2016. 10.1080/00018732.2016.1198134. URL https://doi.org/10.1080/00018732.2016.1198134.

Javier de la Cruz, Sergio Lerma-Hernández, and Jorge G. Hirsch. Quantum chaos in a system with high degree of symmetries. Phys. Rev. E, 102: 032208, Sep 2020. 10.1103/PhysRevE.102.032208. URL https://link.aps.org/doi/10.1103/PhysRevE.102.032208.

Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R. Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354 (6315): 1024–1027, 2016. 10.1126/science.aah3752.

Hans Feldmeier and Jürgen Schnack. Molecular dynamics for fermions. Rev. Mod. Phys., 72: 655–688, Jul 2000. 10.1103/RevModPhys.72.655. URL https://link.aps.org/doi/10.1103/RevModPhys.72.655.

V. V. Flambaum and F. M. Izrailev. Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E, 56: 5144, 1997. 10.1103/PhysRevE.56.5144.

V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and M. G. Kozlov. Structure of compound states in the chaotic spectrum of the Ce atom: Localization properties, matrix elements, and enhancement of weak perturbations. Phys. Rev. A, 50: 267–296, 1994. 10.1103/PhysRevA.50.267.

V. V. Flambaum, F. M. Izrailev, and G. Casati. Towards a statistical theory of finite Fermi systems and compound states: Random two-body interaction approach. Phys. Rev. E, 54: 2136–2139, Aug 1996. 10.1103/PhysRevE.54.2136. URL https://link.aps.org/doi/10.1103/PhysRevE.54.2136.

Thomás Fogarty, Sebastian Deffner, Thomas Busch, and Steve Campbell. Orthogonality catastrophe as a consequence of the quantum speed limit. Phys. Rev. Lett., 124: 110601, Mar 2020. 10.1103/PhysRevLett.124.110601. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.110601.

M. A. García-March, B. Juliá-Díaz, G. E. Astrakharchik, J. Boronat, and A. Polls. Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Phys. Rev. A, 90: 063605, Dec 2014. 10.1103/PhysRevA.90.063605. URL https://link.aps.org/doi/10.1103/PhysRevA.90.063605.

M. A. García-March, A. Yuste, B. Juliá-Díaz, and A. Polls. Mesoscopic superpositions of Tonks-Girardeau states and the Bose-Fermi mapping. Phys. Rev. A, 92: 033621, Sep 2015. 10.1103/PhysRevA.92.033621. URL https://link.aps.org/doi/10.1103/PhysRevA.92.033621.

M A Garcia-March, S van Frank, M Bonneau, J Schmiedmayer, M Lewenstein, and Lea F Santos. Relaxation, chaos, and thermalization in a three-mode model of a Bose–Einstein condensate. New J. Phys., 20 (11): 113039, nov 2018. 10.1088/1367-2630/aaed68. URL https://doi.org/10.1088/1367-2630/aaed68.

M. Gaudin. Boundary energy of a Bose gas in one dimension. Physical Review A, 4 (1): 386–394, July 1971. 10.1103/PhysRevA.4.386. URL http://link.aps.org/doi/10.1103/PhysRevA.4.386.

Michel Gaudin. The Bethe Wavefunction. Cambridge University Press, Trans. Caux, Jean-Sébastien edition, April 2014. ISBN 978-1-107-04585-9. 10.1017/CBO9781107053885.

Marvin Girardeau. Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1 (6): 516–523, November 1960. ISSN 00222488. 10.1063/1.1703687. URL http://jmp.aip.org/resource/1/jmapaq/v1/i6/p516_s1?isAuthorized=no.

J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and Th. Busch. Orthogonality catastrophe as a consequence of qubit embedding in an ultracold Fermi gas. Phys. Rev. A, 84: 063632, Dec 2011. 10.1103/PhysRevA.84.063632. URL https://link.aps.org/doi/10.1103/PhysRevA.84.063632.

T. Guhr and H.A. Weidenmüller. Correlations in anticrossing spectra and scattering theory. Analytical aspects. Chem. Phys., 146: 21 – 38, 1990. 10.1016/0301-0104(90)90003-R. URL http://www.sciencedirect.com/science/article/pii/030101049090003R.

T. Guhr, A. Mueller-Gröeling, and H. A. Weidenmüller. Random matrix theories in quantum physics: Common concepts. Phys. Rep., 299: 189, 1998. 10.1016/S0370-1573(97)00088-4.

Elmar Haller, Mattias Gustavsson, Manfred J. Mark, Johann G. Danzl, Russell Hart, Guido Pupillo, and Hanns-Christoph Nägerl. Realization of an excited, strongly correlated quantum gas phase. Science, 325 (5945): 1224–1227, 2009. 10.1126/science.1175850.

N. L. Harshman. Symmetries of three harmonically trapped particles in one dimension. Phys. Rev. A, 86: 052122, Nov 2012. 10.1103/PhysRevA.86.052122. URL https://link.aps.org/doi/10.1103/PhysRevA.86.052122.

N. L. Harshman. One-dimensional traps, two-body interactions, few-body symmetries: II. $N$ particles. Few-Body Systems, 57 (1): 45–69, 2016a. ISSN 0177-7963, 1432-5411. 10.1007/s00601-015-1025-5. URL http://link.springer.com.proxyau.wrlc.org/article/10.1007/s00601-015-1025-5.

N. L. Harshman. Infinite barriers and symmetries for a few trapped particles in one dimension. Phys. Rev. A, 95 (5): 053616, May 2017. 10.1103/PhysRevA.95.053616. URL https://link.aps.org/doi/10.1103/PhysRevA.95.053616.

N. L. Harshman, Maxim Olshanii, A. S. Dehkharghani, A. G. Volosniev, Steven Glenn Jackson, and N. T. Zinner. Integrable families of hard-core particles with unequal masses in a one-dimensional harmonic trap. Phys. Rev. X, 7: 041001, Oct 2017. 10.1103/PhysRevX.7.041001. URL https://link.aps.org/doi/10.1103/PhysRevX.7.041001.

N.L. Harshman. One-dimensional traps, two-body interactions, few-body symmetries: I. One, two, and three particles. Few-Body Systems, 57 (1): 11–43, 2016b. 10.1007/s00601-015-1024-6.

U. Hartmann, H.A. Weidenmüller, and T. Guhr. Correlations in anticrossing spectra and scattering theory: Numerical simulations. Chem. Phys., 150 (3): 311 – 320, 1991. ISSN 0301-0104. http://dx.doi.org/10.1016/0301-0104(91)87105-5. URL http://www.sciencedirect.com/science/article/pii/0301010491871055.

Xiaodong He, Peng Xu, Jin Wang, and Mingsheng Zhan. High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Opt. Express, 18 (13): 13586–13592, 2010. 10.1364/OE.18.013586.

Ole J. Heilmann and Elliott H. Lieb. Violation of the noncrossing rule: The Hubbard Hamiltonian for benzene. Ann. N.Y. Acad. Sci., 172 (15): 584–617, 1971. ISSN 1749-6632. 10.1111/j.1749-6632.1971.tb34956.x. URL https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1971.tb34956.x.

David Huber, Oleksandr V. Marchukov, Hans-Werner Hammer, and Artem G. Volosniev. Morphology of three-body quantum states from machine learning. New Journal of Physics, 2021. 10.1088/1367-2630/ac0576. URL http://iopscience.iop.org/article/10.1088/1367-2630/ac0576.

Marko Žnidarič. Weak integrability breaking: Chaos with integrability signature in coherent diffusion. Phys. Rev. Lett., 125: 180605, Oct 2020. 10.1103/PhysRevLett.125.180605. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.180605.

Victor Ivrii. 100 years of Weyl's law. Bull. Math. Sci., 6 (3): 379–452, October 2016. ISSN 1664-3607, 1664-3615. 10.1007/s13373-016-0089-y. URL https://link.springer.com/article/10.1007/s13373-016-0089-y.

F. M. Izrailev. Quantum-classical correspondence for isolated systems of interacting particles: Localization and ergodicity in energy space. Phys. Scr., T90: 95–104, 2001. 10.1238/Physica.Topical.090a00095.

Felix M. Izrailev. Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep., 196 (5): 299 – 392, 1990. ISSN 0370-1573. https://doi.org/10.1016/0370-1573(90)90067-C. URL http://www.sciencedirect.com/science/article/pii/037015739090067C.

Sudhir R. Jain. Exact solution of the Schrödinger equation for a particle in a regular N-simplex. Phys. Lett. A, 372 (12): 1978–1981, March 2008. ISSN 0375-9601. 10.1016/j.physleta.2007.11.016. URL https://www.sciencedirect.com/science/article/pii/S0375960107016027.

A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X, 2: 041014, Nov 2012. 10.1103/PhysRevX.2.041014.

A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal. Two-particle quantum interference in tunnel-coupled optical tweezers. Science, 345 (6194): 306–309, 2014. 10.1126/science.1250057.

Tim Keller and Thomás Fogarty. Probing the out-of-equilibrium dynamics of two interacting atoms. Phys. Rev. A, 94: 063620, Dec 2016. 10.1103/PhysRevA.94.063620. URL https://link.aps.org/doi/10.1103/PhysRevA.94.063620.

Michael Knap, Aditya Shashi, Yusuke Nishida, Adilet Imambekov, Dmitry A. Abanin, and Eugene Demler. Time-dependent impurity in ultracold fermions: Orthogonality catastrophe and beyond. Phys. Rev. X, 2: 041020, Dec 2012. 10.1103/PhysRevX.2.041020. URL https://link.aps.org/doi/10.1103/PhysRevX.2.041020.

H. R. Krishnamurthy, H. S. Mani, and H. C. Verma. Exact solution of the schrodinger equation for a particle in a tetrahedral box. J. Phys. A, 15 (7): 2131–2137, July 1982. ISSN 0305-4470. 10.1088/0305-4470/15/7/024. URL https://doi.org/10.1088/0305-4470/15/7/024.

M. Łacki, M. A. Baranov, H. Pichler, and P. Zoller. Nanoscale ``dark state'' optical potentials for cold atoms. Phys. Rev. Lett., 117: 233001, Nov 2016. 10.1103/PhysRevLett.117.233001. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.233001.

Tyler LeBlond, Krishnanand Mallayya, Lev Vidmar, and Marcos Rigol. Entanglement and matrix elements of observables in interacting integrable systems. Phys. Rev. E, 100: 062134, Dec 2019. 10.1103/PhysRevE.100.062134. URL https://link.aps.org/doi/10.1103/PhysRevE.100.062134.

S. Lerma-Hernández, D. Villaseñor, M. A. Bastarrachea-Magnani, E. J. Torres-Herrera, L. F. Santos, and J. G. Hirsch. Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. Phys. Rev. E, 100: 012218, Jul 2019. 10.1103/PhysRevE.100.012218. URL https://link.aps.org/doi/10.1103/PhysRevE.100.012218.

Brian J. Lester, Niclas Luick, Adam M. Kaufman, Collin M. Reynolds, and Cindy A. Regal. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett., 115: 073003, Aug 2015. 10.1103/PhysRevLett.115.073003. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.073003.

Luc Leviandier, Maurice Lombardi, Rémi Jost, and Jean Paul Pique. Fourier transform: A tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett., 56: 2449–2452, Jun 1986. 10.1103/PhysRevLett.56.2449.

Maciej Lewenstein, Anna Sanpera, and Veronica Ahufinger. Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems. Oxford University Press, 2012. 10.1093/acprof:oso/9780199573127.001.0001.

F Leyvraz, A García, H Kohler, and T H Seligman. Fidelity under isospectral perturbations: a random matrix study. J. Phys. A, 46 (27): 275303, 2013. 10.1088/1751-8113/46/27/275303. URL http://stacks.iop.org/1751-8121/46/i=27/a=275303.

Elliott H. Lieb and Werner Liniger. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130: 1605–1616, May 1963. 10.1103/PhysRev.130.1605. URL https://link.aps.org/doi/10.1103/PhysRev.130.1605.

M. Lombardi and T. H. Seligman. Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. Phys. Rev. A, 47: 3571–3586, May 1993. 10.1103/PhysRevA.47.3571. URL http://link.aps.org/doi/10.1103/PhysRevA.47.3571.

D. Luitz and Y. Bar Lev. The ergodic side of the many-body localization transition. Ann. Phys.(Berlin), 529 (7): 1600350, 2017. 10.1002/andp.201600350.

Juan Maldacena, Stephen H. Shenker, and Douglas Stanford. A bound on chaos. J. High Energy Phys., 2016 (8): 106, 2016. 10.1007/JHEP08(2016)106. URL http://dx.doi.org/10.1007/JHEP08(2016)106.

M. L. Mehta. Random Matrices. Academic Press, Boston, USA, 1991.

Nicolás Mirkin and Diego Wisniacki. Quantum chaos, equilibration, and control in extremely short spin chains. Phys. Rev. E, 103: L020201, Feb 2021. 10.1103/PhysRevE.103.L020201. URL https://link.aps.org/doi/10.1103/PhysRevE.103.L020201.

Simon Murmann, Andrea Bergschneider, Vincent M Klinkhamer, Gerhard Zürn, Thomas Lompe, and Selim Jochim. Two fermions in a double well: Exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett., 114 (8): 080402, 2015. 10.1103/PhysRevLett.114.080402.

R. Nandkishore and D.A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 6: 15, 2015. 10.1146/annurev-conmatphys-031214-014726.

N. Oelkers, M. T. Batchelor, M. Bortz, and X.-W. Guan. Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions. J. Phys. A, 39 (5): 1073, 2006. ISSN 0305-4470. 10.1088/0305-4470/39/5/005. URL http://stacks.iop.org/0305-4470/39/i=5/a=005.

M. Olshanii. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett., 81: 938–941, Aug 1998. 10.1103/PhysRevLett.81.938. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.938.

Maxim Olshanii and Steven G. Jackson. An exactly solvable quantum four-body problem associated with the symmetries of an octacube. New J. Phys., 17 (10): 105005, 2015. ISSN 1367-2630. 10.1088/1367-2630/17/10/105005. URL http://stacks.iop.org/1367-2630/17/i=10/a=105005.

Maxim Olshanii, Thibault Scoquart, Dmitry Yampolsky, Vanja Dunjko, and Steven Glenn Jackson. Creating entanglement using integrals of motion. Phys. Rev. A, 97 (1): 013630, January 2018. 10.1103/PhysRevA.97.013630. URL https://link.aps.org/doi/10.1103/PhysRevA.97.013630.

Guido Pagano, Marco Mancini, Giacomo Cappellini, Pietro Lombardi, Florian Schäfer, Hui Hu, Xia-Ji Liu, Jacopo Catani, Carlo Sias, Massimo Inguscio, and Leonardo Fallani. A one-dimensional liquid of fermions with tunable spin. Nat. Phys., 10 (3): 198–201, 2014. 10.1038/nphys2878. URL https://doi.org/10.1038/nphys2878.

Akhilesh Pandey and Ramakrishna Ramaswamy. Level spacings for harmonic-oscillator systems. Phys. Rev. A, 43: 4237–4243, Apr 1991. 10.1103/PhysRevA.43.4237. URL http://link.aps.org/doi/10.1103/PhysRevA.43.4237.

J. P. Pique, Y. Chen, R. W. Field, and J. L. Kinsey. Chaos and dynamics on 0.5–300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. Phys. Rev. Lett., 58: 475–478, Feb 1987. 10.1103/PhysRevLett.58.475. URL http://link.aps.org/doi/10.1103/PhysRevLett.58.475.

R. E. Prange. The spectral form factor is not self-averaging. Phys. Rev. Lett., 78: 2280, 1997. 10.1103/PhysRevLett.78.2280. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.2280.

Cindy Regal. Bringing order to neutral atom arrays. Science, 354 (6315): 972–973, 2016. 10.1126/science.aaj2145.

Irina Reshodko, Albert Benseny, Judit Romhányi, and Thomas Busch. Topological states in the Kronig–Penney model with arbitrary scattering potentials. New J. Phys., 21 (1): 013010, jan 2019. 10.1088/1367-2630/aaf9bf. URL https://doi.org/10.1088/1367-2630/aaf9bf.

Marcos Rigol and Alejandro Muramatsu. Ground-state properties of hard-core bosons confined on one-dimensional optical lattices. Phys. Rev. A, 72: 013604, Jul 2005. 10.1103/PhysRevA.72.013604. URL https://link.aps.org/doi/10.1103/PhysRevA.72.013604.

Daniel A. Roberts, Douglas Stanford, and Leonard Susskind. Localized shocks. JHEP, 2015 (3): 51, 2015. ISSN 1029-8479. 10.1007/JHEP03(2015)051. URL http://dx.doi.org/10.1007/JHEP03(2015)051.

Lea F. Santos, Francisco Pérez-Bernal, and E. Jonathan Torres-Herrera. Speck of chaos. Phys. Rev. Research, 2: 043034, Oct 2020. 10.1103/PhysRevResearch.2.043034. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043034.

S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 122: 143002, Apr 2019. 10.1103/PhysRevLett.122.143002. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.143002.

M. Schiulaz, M. Távora, and L. F. Santos. From few- to many-body quantum systems. Quantum Sci. Technol., 3: 044006, 2018. 10.1088/2058-9565/aad913.

Mauro Schiulaz, E. Jonathan Torres-Herrera, and Lea F. Santos. Thouless and relaxation time scales in many-body quantum systems. Phys. Rev. B, 99: 174313, May 2019. 10.1103/PhysRevB.99.174313. URL https://link.aps.org/doi/10.1103/PhysRevB.99.174313.

Mauro Schiulaz, E. Jonathan Torres-Herrera, Francisco Pérez-Bernal, and Lea F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems. Phys. Rev. B, 101: 174312, May 2020. 10.1103/PhysRevB.101.174312. URL https://link.aps.org/doi/10.1103/PhysRevB.101.174312.

J. Schnack and H. Feldmeier. Statistical properties of fermionic molecular dynamics. Nuc. Phys. A, 601 (2): 181 – 194, 1996. ISSN 0375-9474. 10.1016/0375-9474(95)00505-6. URL http://www.sciencedirect.com/science/article/pii/0375947495005056.

M. Schreiber, S. S. Hodgman, Pr. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 349 (6250): 842–845, 2015. ISSN 0036-8075. 10.1126/science.aaa7432. URL http://science.sciencemag.org/content/349/6250/842.

Kai-Niklas Schymik, Vincent Lienhard, Daniel Barredo, Pascal Scholl, Hannah Williams, Antoine Browaeys, and Thierry Lahaye. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A, 102: 063107, Dec 2020. 10.1103/PhysRevA.102.063107.

Friedhelm Serwane, Gerhard Zürn, Thomas Lompe, TB Ottenstein, AN Wenz, and S Jochim. Deterministic preparation of a tunable few-fermion system. Science, 332 (6027): 336–338, 2011. 10.1126/science.1201351.

G. B. Shaw. Degeneracy in the particle-in-a-box problem. J. Phys. A, 7 (13): 1537–1546, September 1974. ISSN 0301-0015. 10.1088/0305-4470/7/13/008. URL https://doi.org/10.1088/0305-4470/7/13/008.

Tomasz Sowiński and Miguel Ángel García-March. One-dimensional mixtures of several ultracold atoms: a review. Rep. Progr. Phys., 82 (10): 104401, 2019. 10.1088/1361-6633/ab3a80.

H-J. Stöckmann. Quantum Chaos: an introduction. Cambridge University Press, Cambridge, UK, 2006. 10.1017/CBO9780511524622.

E. J. Torres-Herrera and Lea F. Santos. Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. (Berlin), 529: 1600284, 2017a. ISSN 1521-3889. 10.1002/andp.201600284. URL http://dx.doi.org/10.1002/andp.201600284.

E. J. Torres-Herrera and Lea F. Santos. Dynamical manifestations of quantum chaos: correlation hole and bulge. Philos. Trans. Royal Soc. A, 375 (2108): 20160434, 2017b. 10.1098/rsta.2016.0434.

E. J. Torres-Herrera, Antonio M. García-García, and Lea F. Santos. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B, 97: 060303, Feb 2018. 10.1103/PhysRevB.97.060303. URL https://link.aps.org/doi/10.1103/PhysRevB.97.060303.

C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 14 (7): 745–749, 2018. ISSN 1745-2481. 10.1038/s41567-018-0137-5. URL https://doi.org/10.1038/s41567-018-0137-5.

J. W. Turner. On the quantum particle in a polyhedral box. J. Phys. A, 17 (14): 2791–2797, October 1984. ISSN 0305-4470. 10.1088/0305-4470/17/14/022. URL https://doi.org/10.1088/0305-4470/17/14/022.

Y. Wang, S. Subhankar, P. Bienias, M. Łacki, T-C. Tsui, M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, and S. L. Rolston. Dark state optical lattice with a subwavelength spatial structure. Phys. Rev. Lett., 120: 083601, Feb 2018. 10.1103/PhysRevLett.120.083601. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.083601.

AN Wenz, G Zürn, Simon Murmann, I Brouzos, T Lompe, and S Jochim. From few to many: Observing the formation of a Fermi sea one atom at a time. Science, 342 (6157): 457–460, 2013. 10.1126/science.1240516.

Joshua Wilkie and Paul Brumer. Time-dependent manifestations of quantum chaos. Phys. Rev. Lett., 67: 1185–1188, Sep 1991. 10.1103/PhysRevLett.67.1185. URL https://link.aps.org/doi/10.1103/PhysRevLett.67.1185.

Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, and Immanuel Bloch. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465 (7295): 197–201, May 2010. ISSN 1476-4687. 10.1038/nature09036. URL https://doi.org/10.1038/nature09036.

Pablo R. Zangara, Axel D. Dente, E. J. Torres-Herrera, Horacio M. Pastawski, A. Iucci, and Lea F. Santos. Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E, 88: 032913, 2013. 10.1103/PhysRevE.88.032913.

V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi. The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep., 276: 85–176, 1996. 10.1016/S0370-1573(96)00007-5.

Guy Zisling, Lea F. Santos, and Yevgeny Bar Lev. How many particles make up a chaotic many-body quantum system? SciPost Phys., 10: 88, 2021. 10.21468/SciPostPhys.10.4.088. URL https://scipost.org/10.21468/SciPostPhys.10.4.088.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem