- -

Probing the edge between integrability and quantum chaos in interacting few-atom systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probing the edge between integrability and quantum chaos in interacting few-atom systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fogarty, Thomas es_ES
dc.contributor.author Garcia March, Miguel Angel es_ES
dc.contributor.author Santos, Lea F. es_ES
dc.contributor.author Harshman, N.L. es_ES
dc.date.accessioned 2022-11-09T19:01:43Z
dc.date.available 2022-11-09T19:01:43Z
dc.date.issued 2021-06-29 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189535
dc.description.abstract [EN] Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in onedimensional multi-well potentials. We explore the emergence of chaos as the number of particles is increased, starting with as few as two, and as the number of wells is increased, ranging from a double well to a multi-well Kronig-Penney-like system. In this way, we illuminate the narrow boundary between integrability and chaos in a highly tunable few-body system. We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen. The analysis is performed for bosonic particles and could also be extended to distinguishable fermions. es_ES
dc.description.sponsorship The authors thank M. Olshanii, T. Busch, A. Fabra and M. Boubakour for insights on integrability and conversations about chaos. TF acknowledges support from JSPS KAKENHI-21K13856 and the Okinawa Institute of Science and Technology Graduate University. We are grateful for the help and support provided by the Scientific Computing and Data Analysis section of Research Support Division at OIST. LFS was supported by the NSF grant No. DMR-1936006. M.A.G.M. acknowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203) and Spanish Ministry MINECO (FIDEUA PID2019106901GBI00/10.13039/501100011033). es_ES
dc.language Inglés es_ES
dc.publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften es_ES
dc.relation.ispartof Quantum es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Probing the edge between integrability and quantum chaos in interacting few-atom systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.22331/q-2021-06-29-486 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106901GB-I00/ES/PHYSICS OF NEW CHALLENGES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //BEAGAL18%2F00203//AYUDA BEATRIZ GALINDO MODALIDAD JUNIOR-GARCIA MARCH/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//DMR-1936006/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//21K13856/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Fogarty, T.; Garcia March, MA.; Santos, LF.; Harshman, N. (2021). Probing the edge between integrability and quantum chaos in interacting few-atom systems. Quantum. 5:1-22. https://doi.org/10.22331/q-2021-06-29-486 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.22331/q-2021-06-29-486 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.identifier.eissn 2521-327X es_ES
dc.relation.pasarela S\465780 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder National Science Foundation, China es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology, Japón es_ES
dc.description.references Dmitry A. Abanin, Ehud Altman, Immanuel Bloch, and Maksym Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, May 2019. 10.1103/RevModPhys.91.021001. URL https://link.aps.org/doi/10.1103/RevModPhys.91.021001. es_ES
dc.description.references Y. Alhassid and R. D. Levine. Spectral autocorrelation function in the statistical theory of energy levels. Phys. Rev. A, 46: 4650–4653, 1992. 10.1103/PhysRevA.46.4650. URL https://link.aps.org/doi/10.1103/PhysRevA.46.4650. es_ES
dc.description.references G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini. Beyond the Tonks-Girardeau gas: Strongly correlated regime in quasi-one-dimensional bose gases. Phys. Rev. Lett., 95: 190407, Nov 2005. 10.1103/PhysRevLett.95.190407. URL https://link.aps.org/doi/10.1103/PhysRevLett.95.190407. es_ES
dc.description.references Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science, 354 (6315): 1021–1023, 2016. 10.1126/science.aah3778. es_ES
dc.description.references M T Batchelor, M Bortz, X W Guan, and N Oelkers. Evidence for the super Tonks-Girardeau gas. J. Stat. Mech., 2005 (10): L10001–L10001, oct 2005. 10.1088/1742-5468/2005/10/l10001. URL https://doi.org/10.1088/1742-5468/2005/10/l10001. es_ES
dc.description.references J. H. Becher, E. Sindici, R. Klemt, S. Jochim, A. J. Daley, and P. M. Preiss. Measurement of identical particle entanglement and the influence of antisymmetrization. Phys. Rev. Lett., 125: 180402, Oct 2020. 10.1103/PhysRevLett.125.180402. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.180402. es_ES
dc.description.references Andrea Bergschneider, Vincent M Klinkhamer, Jan Hendrik Becher, Ralf Klemt, Lukas Palm, Gerhard Zürn, Selim Jochim, and Philipp M Preiss. Experimental characterization of two-particle entanglement through position and momentum correlations. Nat. Phys., 15 (7): 640–644, 2019. 10.1038/s41567-019-0508-6. es_ES
dc.description.references Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682): 579–584, 2017. ISSN 1476-4687. 10.1038/nature24622. URL https://doi.org/10.1038/nature24622. es_ES
dc.description.references M. V. Berry. Quantizing a classically ergodic system: Sinai's billiard and the KKR method. Ann. Phys., 131 (1): 163–216, January 1981. ISSN 0003-4916. 10.1016/0003-4916(81)90189-5. URL https://www.sciencedirect.com/science/article/pii/0003491681901895. es_ES
dc.description.references M. V. Berry and M. Tabor. Level clustering in the regular spectrum. Proc. R. Soc. Lond. A, 356: 375 – 394, 1977. 10.1098/rspa.1977.0140. es_ES
dc.description.references M. V. Berry and M. Wilkinson. Diabolical Points in the Spectra of Triangles. Proc. R. Soc. Lond. A, 392 (1802): 15–43, 1984. ISSN 0080-4630. 10.1098/rspa.1984.0022. URL https://www.jstor.org/stable/2397740. es_ES
dc.description.references B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg, and M. Žnidarič. Finite-temperature transport in one-dimensional quantum lattice models. Rev. Mod. Phys., 93: 025003, May 2021. 10.1103/RevModPhys.93.025003. URL https://link.aps.org/doi/10.1103/RevModPhys.93.025003. es_ES
dc.description.references Wouter Beugeling, Roderich Moessner, and Masudul Haque. Off-diagonal matrix elements of local operators in many-body quantum systems. Phys. Rev. E, 91: 012144, Jan 2015. 10.1103/PhysRevE.91.012144. URL https://link.aps.org/doi/10.1103/PhysRevE.91.012144. es_ES
dc.description.references Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold gases. Rev. Mod. Phys., 80: 885–964, Jul 2008. 10.1103/RevModPhys.80.885. URL https://link.aps.org/doi/10.1103/RevModPhys.80.885. es_ES
dc.description.references D Blume. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys., 75 (4): 046401, mar 2012. 10.1088/0034-4885/75/4/046401. URL https://doi.org/10.1088/0034-4885/75/4/046401. es_ES
dc.description.references Doerte Blume. Jumping from two and three particles to infinitely many. Physics, 3: 74, 2010. 10.1103/Physics.3.74. es_ES
dc.description.references F. Borgonovi, F. M. Izrailev, L. F. Santos, and V. G. Zelevinsky. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep., 626: 1, 2016. 10.1016/j.physrep.2016.02.005. es_ES
dc.description.references R. Bourgain, J. Pellegrino, A. Fuhrmanek, Y. R. P. Sortais, and A. Browaeys. Evaporative cooling of a small number of atoms in a single-beam microscopic dipole trap. Phys. Rev. A, 88: 023428, Aug 2013. 10.1103/PhysRevA.88.023428. URL https://link.aps.org/doi/10.1103/PhysRevA.88.023428. es_ES
dc.description.references Marlon Brenes, John Goold, and Marcos Rigol. Low-frequency behavior of off-diagonal matrix elements in the integrable XXZ chain and in a locally perturbed quantum-chaotic XXZ chain. Phys. Rev. B, 102: 075127, Aug 2020a. 10.1103/PhysRevB.102.075127. URL https://link.aps.org/doi/10.1103/PhysRevB.102.075127. es_ES
dc.description.references Marlon Brenes, Tyler LeBlond, John Goold, and Marcos Rigol. Eigenstate thermalization in a locally perturbed integrable system. Phys. Rev. Lett., 125: 070605, Aug 2020b. https://doi.org/10.1103/PhysRevLett.125.070605. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.070605. es_ES
dc.description.references Marlon Brenes, Silvia Pappalardi, Mark T. Mitchison, John Goold, and Alessandro Silva. Out-of-time-order correlations and the fine structure of eigenstate thermalisation. arXiv:2103.01161, 2021. URL https://arxiv.org/abs/2103.01161. es_ES
dc.description.references T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong. Random-matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys., 53: 385, 1981. 10.1103/RevModPhys.53.385. URL https://link.aps.org/doi/10.1103/RevModPhys.53.385. es_ES
dc.description.references Steve Campbell, Miguel Ángel García-March, Thomás Fogarty, and Thomas Busch. Quenching small quantum gases: Genesis of the orthogonality catastrophe. Phys. Rev. A, 90: 013617, Jul 2014. 10.1103/PhysRevA.90.013617. URL https://link.aps.org/doi/10.1103/PhysRevA.90.013617. es_ES
dc.description.references Marko Cetina, Michael Jag, Rianne S. Lous, Isabella Fritsche, Jook T. M. Walraven, Rudolf Grimm, Jesper Levinsen, Meera M. Parish, Richard Schmidt, Michael Knap, and Eugene Demler. Ultrafast many-body interferometry of impurities coupled to a Fermi sea. Science, 354 (6308): 96–99, 2016. ISSN 0036-8075. 10.1126/science.aaf5134. es_ES
dc.description.references P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Fölling, and I. Bloch. Counting atoms using interaction blockade in an optical superlattice. Phys. Rev. Lett., 101: 090404, Aug 2008. 10.1103/PhysRevLett.101.090404. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.090404. es_ES
dc.description.references Aurélia Chenu, Javier Molina-Vilaplana, and Adolfo del Campo. Work statistics, Loschmidt echo and information scrambling in chaotic quantum systems. Quantum, 3: 127, March 2019. ISSN 2521-327X. 10.22331/q-2019-03-04-127. URL https://doi.org/10.22331/q-2019-03-04-127. es_ES
dc.description.references J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida. Chaos, complexity, and random matrices. J. High Energy Phys., 2017 (11): 48, Nov 2017. 10.1007/JHEP11(2017)048. URL https://doi.org/10.1007/JHEP11(2017)048. es_ES
dc.description.references L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 65 (3): 239–362, 2016. 10.1080/00018732.2016.1198134. URL https://doi.org/10.1080/00018732.2016.1198134. es_ES
dc.description.references Javier de la Cruz, Sergio Lerma-Hernández, and Jorge G. Hirsch. Quantum chaos in a system with high degree of symmetries. Phys. Rev. E, 102: 032208, Sep 2020. 10.1103/PhysRevE.102.032208. URL https://link.aps.org/doi/10.1103/PhysRevE.102.032208. es_ES
dc.description.references Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R. Anschuetz, Alexandre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D. Lukin. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 354 (6315): 1024–1027, 2016. 10.1126/science.aah3752. es_ES
dc.description.references Hans Feldmeier and Jürgen Schnack. Molecular dynamics for fermions. Rev. Mod. Phys., 72: 655–688, Jul 2000. 10.1103/RevModPhys.72.655. URL https://link.aps.org/doi/10.1103/RevModPhys.72.655. es_ES
dc.description.references V. V. Flambaum and F. M. Izrailev. Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates. Phys. Rev. E, 56: 5144, 1997. 10.1103/PhysRevE.56.5144. es_ES
dc.description.references V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and M. G. Kozlov. Structure of compound states in the chaotic spectrum of the Ce atom: Localization properties, matrix elements, and enhancement of weak perturbations. Phys. Rev. A, 50: 267–296, 1994. 10.1103/PhysRevA.50.267. es_ES
dc.description.references V. V. Flambaum, F. M. Izrailev, and G. Casati. Towards a statistical theory of finite Fermi systems and compound states: Random two-body interaction approach. Phys. Rev. E, 54: 2136–2139, Aug 1996. 10.1103/PhysRevE.54.2136. URL https://link.aps.org/doi/10.1103/PhysRevE.54.2136. es_ES
dc.description.references Thomás Fogarty, Sebastian Deffner, Thomas Busch, and Steve Campbell. Orthogonality catastrophe as a consequence of the quantum speed limit. Phys. Rev. Lett., 124: 110601, Mar 2020. 10.1103/PhysRevLett.124.110601. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.110601. es_ES
dc.description.references M. A. García-March, B. Juliá-Díaz, G. E. Astrakharchik, J. Boronat, and A. Polls. Distinguishability, degeneracy, and correlations in three harmonically trapped bosons in one dimension. Phys. Rev. A, 90: 063605, Dec 2014. 10.1103/PhysRevA.90.063605. URL https://link.aps.org/doi/10.1103/PhysRevA.90.063605. es_ES
dc.description.references M. A. García-March, A. Yuste, B. Juliá-Díaz, and A. Polls. Mesoscopic superpositions of Tonks-Girardeau states and the Bose-Fermi mapping. Phys. Rev. A, 92: 033621, Sep 2015. 10.1103/PhysRevA.92.033621. URL https://link.aps.org/doi/10.1103/PhysRevA.92.033621. es_ES
dc.description.references M A Garcia-March, S van Frank, M Bonneau, J Schmiedmayer, M Lewenstein, and Lea F Santos. Relaxation, chaos, and thermalization in a three-mode model of a Bose–Einstein condensate. New J. Phys., 20 (11): 113039, nov 2018. 10.1088/1367-2630/aaed68. URL https://doi.org/10.1088/1367-2630/aaed68. es_ES
dc.description.references M. Gaudin. Boundary energy of a Bose gas in one dimension. Physical Review A, 4 (1): 386–394, July 1971. 10.1103/PhysRevA.4.386. URL http://link.aps.org/doi/10.1103/PhysRevA.4.386. es_ES
dc.description.references Michel Gaudin. The Bethe Wavefunction. Cambridge University Press, Trans. Caux, Jean-Sébastien edition, April 2014. ISBN 978-1-107-04585-9. 10.1017/CBO9781107053885. es_ES
dc.description.references Marvin Girardeau. Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension. Journal of Mathematical Physics, 1 (6): 516–523, November 1960. ISSN 00222488. 10.1063/1.1703687. URL http://jmp.aip.org/resource/1/jmapaq/v1/i6/p516_s1?isAuthorized=no. es_ES
dc.description.references J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and Th. Busch. Orthogonality catastrophe as a consequence of qubit embedding in an ultracold Fermi gas. Phys. Rev. A, 84: 063632, Dec 2011. 10.1103/PhysRevA.84.063632. URL https://link.aps.org/doi/10.1103/PhysRevA.84.063632. es_ES
dc.description.references T. Guhr and H.A. Weidenmüller. Correlations in anticrossing spectra and scattering theory. Analytical aspects. Chem. Phys., 146: 21 – 38, 1990. 10.1016/0301-0104(90)90003-R. URL http://www.sciencedirect.com/science/article/pii/030101049090003R. es_ES
dc.description.references T. Guhr, A. Mueller-Gröeling, and H. A. Weidenmüller. Random matrix theories in quantum physics: Common concepts. Phys. Rep., 299: 189, 1998. 10.1016/S0370-1573(97)00088-4. es_ES
dc.description.references Elmar Haller, Mattias Gustavsson, Manfred J. Mark, Johann G. Danzl, Russell Hart, Guido Pupillo, and Hanns-Christoph Nägerl. Realization of an excited, strongly correlated quantum gas phase. Science, 325 (5945): 1224–1227, 2009. 10.1126/science.1175850. es_ES
dc.description.references N. L. Harshman. Symmetries of three harmonically trapped particles in one dimension. Phys. Rev. A, 86: 052122, Nov 2012. 10.1103/PhysRevA.86.052122. URL https://link.aps.org/doi/10.1103/PhysRevA.86.052122. es_ES
dc.description.references N. L. Harshman. One-dimensional traps, two-body interactions, few-body symmetries: II. $N$ particles. Few-Body Systems, 57 (1): 45–69, 2016a. ISSN 0177-7963, 1432-5411. 10.1007/s00601-015-1025-5. URL http://link.springer.com.proxyau.wrlc.org/article/10.1007/s00601-015-1025-5. es_ES
dc.description.references N. L. Harshman. Infinite barriers and symmetries for a few trapped particles in one dimension. Phys. Rev. A, 95 (5): 053616, May 2017. 10.1103/PhysRevA.95.053616. URL https://link.aps.org/doi/10.1103/PhysRevA.95.053616. es_ES
dc.description.references N. L. Harshman, Maxim Olshanii, A. S. Dehkharghani, A. G. Volosniev, Steven Glenn Jackson, and N. T. Zinner. Integrable families of hard-core particles with unequal masses in a one-dimensional harmonic trap. Phys. Rev. X, 7: 041001, Oct 2017. 10.1103/PhysRevX.7.041001. URL https://link.aps.org/doi/10.1103/PhysRevX.7.041001. es_ES
dc.description.references N.L. Harshman. One-dimensional traps, two-body interactions, few-body symmetries: I. One, two, and three particles. Few-Body Systems, 57 (1): 11–43, 2016b. 10.1007/s00601-015-1024-6. es_ES
dc.description.references U. Hartmann, H.A. Weidenmüller, and T. Guhr. Correlations in anticrossing spectra and scattering theory: Numerical simulations. Chem. Phys., 150 (3): 311 – 320, 1991. ISSN 0301-0104. http://dx.doi.org/10.1016/0301-0104(91)87105-5. URL http://www.sciencedirect.com/science/article/pii/0301010491871055. es_ES
dc.description.references Xiaodong He, Peng Xu, Jin Wang, and Mingsheng Zhan. High efficient loading of two atoms into a microscopic optical trap by dynamically reshaping the trap with a spatial light modulator. Opt. Express, 18 (13): 13586–13592, 2010. 10.1364/OE.18.013586. es_ES
dc.description.references Ole J. Heilmann and Elliott H. Lieb. Violation of the noncrossing rule: The Hubbard Hamiltonian for benzene. Ann. N.Y. Acad. Sci., 172 (15): 584–617, 1971. ISSN 1749-6632. 10.1111/j.1749-6632.1971.tb34956.x. URL https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.1971.tb34956.x. es_ES
dc.description.references David Huber, Oleksandr V. Marchukov, Hans-Werner Hammer, and Artem G. Volosniev. Morphology of three-body quantum states from machine learning. New Journal of Physics, 2021. 10.1088/1367-2630/ac0576. URL http://iopscience.iop.org/article/10.1088/1367-2630/ac0576. es_ES
dc.description.references Marko Žnidarič. Weak integrability breaking: Chaos with integrability signature in coherent diffusion. Phys. Rev. Lett., 125: 180605, Oct 2020. 10.1103/PhysRevLett.125.180605. URL https://link.aps.org/doi/10.1103/PhysRevLett.125.180605. es_ES
dc.description.references Victor Ivrii. 100 years of Weyl's law. Bull. Math. Sci., 6 (3): 379–452, October 2016. ISSN 1664-3607, 1664-3615. 10.1007/s13373-016-0089-y. URL https://link.springer.com/article/10.1007/s13373-016-0089-y. es_ES
dc.description.references F. M. Izrailev. Quantum-classical correspondence for isolated systems of interacting particles: Localization and ergodicity in energy space. Phys. Scr., T90: 95–104, 2001. 10.1238/Physica.Topical.090a00095. es_ES
dc.description.references Felix M. Izrailev. Simple models of quantum chaos: Spectrum and eigenfunctions. Phys. Rep., 196 (5): 299 – 392, 1990. ISSN 0370-1573. https://doi.org/10.1016/0370-1573(90)90067-C. URL http://www.sciencedirect.com/science/article/pii/037015739090067C. es_ES
dc.description.references Sudhir R. Jain. Exact solution of the Schrödinger equation for a particle in a regular N-simplex. Phys. Lett. A, 372 (12): 1978–1981, March 2008. ISSN 0375-9601. 10.1016/j.physleta.2007.11.016. URL https://www.sciencedirect.com/science/article/pii/S0375960107016027. es_ES
dc.description.references A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X, 2: 041014, Nov 2012. 10.1103/PhysRevX.2.041014. es_ES
dc.description.references A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall, M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal. Two-particle quantum interference in tunnel-coupled optical tweezers. Science, 345 (6194): 306–309, 2014. 10.1126/science.1250057. es_ES
dc.description.references Tim Keller and Thomás Fogarty. Probing the out-of-equilibrium dynamics of two interacting atoms. Phys. Rev. A, 94: 063620, Dec 2016. 10.1103/PhysRevA.94.063620. URL https://link.aps.org/doi/10.1103/PhysRevA.94.063620. es_ES
dc.description.references Michael Knap, Aditya Shashi, Yusuke Nishida, Adilet Imambekov, Dmitry A. Abanin, and Eugene Demler. Time-dependent impurity in ultracold fermions: Orthogonality catastrophe and beyond. Phys. Rev. X, 2: 041020, Dec 2012. 10.1103/PhysRevX.2.041020. URL https://link.aps.org/doi/10.1103/PhysRevX.2.041020. es_ES
dc.description.references H. R. Krishnamurthy, H. S. Mani, and H. C. Verma. Exact solution of the schrodinger equation for a particle in a tetrahedral box. J. Phys. A, 15 (7): 2131–2137, July 1982. ISSN 0305-4470. 10.1088/0305-4470/15/7/024. URL https://doi.org/10.1088/0305-4470/15/7/024. es_ES
dc.description.references M. Łacki, M. A. Baranov, H. Pichler, and P. Zoller. Nanoscale ``dark state'' optical potentials for cold atoms. Phys. Rev. Lett., 117: 233001, Nov 2016. 10.1103/PhysRevLett.117.233001. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.233001. es_ES
dc.description.references Tyler LeBlond, Krishnanand Mallayya, Lev Vidmar, and Marcos Rigol. Entanglement and matrix elements of observables in interacting integrable systems. Phys. Rev. E, 100: 062134, Dec 2019. 10.1103/PhysRevE.100.062134. URL https://link.aps.org/doi/10.1103/PhysRevE.100.062134. es_ES
dc.description.references S. Lerma-Hernández, D. Villaseñor, M. A. Bastarrachea-Magnani, E. J. Torres-Herrera, L. F. Santos, and J. G. Hirsch. Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. Phys. Rev. E, 100: 012218, Jul 2019. 10.1103/PhysRevE.100.012218. URL https://link.aps.org/doi/10.1103/PhysRevE.100.012218. es_ES
dc.description.references Brian J. Lester, Niclas Luick, Adam M. Kaufman, Collin M. Reynolds, and Cindy A. Regal. Rapid production of uniformly filled arrays of neutral atoms. Phys. Rev. Lett., 115: 073003, Aug 2015. 10.1103/PhysRevLett.115.073003. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.073003. es_ES
dc.description.references Luc Leviandier, Maurice Lombardi, Rémi Jost, and Jean Paul Pique. Fourier transform: A tool to measure statistical level properties in very complex spectra. Phys. Rev. Lett., 56: 2449–2452, Jun 1986. 10.1103/PhysRevLett.56.2449. es_ES
dc.description.references Maciej Lewenstein, Anna Sanpera, and Veronica Ahufinger. Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems. Oxford University Press, 2012. 10.1093/acprof:oso/9780199573127.001.0001. es_ES
dc.description.references F Leyvraz, A García, H Kohler, and T H Seligman. Fidelity under isospectral perturbations: a random matrix study. J. Phys. A, 46 (27): 275303, 2013. 10.1088/1751-8113/46/27/275303. URL http://stacks.iop.org/1751-8121/46/i=27/a=275303. es_ES
dc.description.references Elliott H. Lieb and Werner Liniger. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130: 1605–1616, May 1963. 10.1103/PhysRev.130.1605. URL https://link.aps.org/doi/10.1103/PhysRev.130.1605. es_ES
dc.description.references M. Lombardi and T. H. Seligman. Universal and nonuniversal statistical properties of levels and intensities for chaotic Rydberg molecules. Phys. Rev. A, 47: 3571–3586, May 1993. 10.1103/PhysRevA.47.3571. URL http://link.aps.org/doi/10.1103/PhysRevA.47.3571. es_ES
dc.description.references D. Luitz and Y. Bar Lev. The ergodic side of the many-body localization transition. Ann. Phys.(Berlin), 529 (7): 1600350, 2017. 10.1002/andp.201600350. es_ES
dc.description.references Juan Maldacena, Stephen H. Shenker, and Douglas Stanford. A bound on chaos. J. High Energy Phys., 2016 (8): 106, 2016. 10.1007/JHEP08(2016)106. URL http://dx.doi.org/10.1007/JHEP08(2016)106. es_ES
dc.description.references M. L. Mehta. Random Matrices. Academic Press, Boston, USA, 1991. es_ES
dc.description.references Nicolás Mirkin and Diego Wisniacki. Quantum chaos, equilibration, and control in extremely short spin chains. Phys. Rev. E, 103: L020201, Feb 2021. 10.1103/PhysRevE.103.L020201. URL https://link.aps.org/doi/10.1103/PhysRevE.103.L020201. es_ES
dc.description.references Simon Murmann, Andrea Bergschneider, Vincent M Klinkhamer, Gerhard Zürn, Thomas Lompe, and Selim Jochim. Two fermions in a double well: Exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett., 114 (8): 080402, 2015. 10.1103/PhysRevLett.114.080402. es_ES
dc.description.references R. Nandkishore and D.A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys., 6: 15, 2015. 10.1146/annurev-conmatphys-031214-014726. es_ES
dc.description.references N. Oelkers, M. T. Batchelor, M. Bortz, and X.-W. Guan. Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions. J. Phys. A, 39 (5): 1073, 2006. ISSN 0305-4470. 10.1088/0305-4470/39/5/005. URL http://stacks.iop.org/0305-4470/39/i=5/a=005. es_ES
dc.description.references M. Olshanii. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett., 81: 938–941, Aug 1998. 10.1103/PhysRevLett.81.938. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.938. es_ES
dc.description.references Maxim Olshanii and Steven G. Jackson. An exactly solvable quantum four-body problem associated with the symmetries of an octacube. New J. Phys., 17 (10): 105005, 2015. ISSN 1367-2630. 10.1088/1367-2630/17/10/105005. URL http://stacks.iop.org/1367-2630/17/i=10/a=105005. es_ES
dc.description.references Maxim Olshanii, Thibault Scoquart, Dmitry Yampolsky, Vanja Dunjko, and Steven Glenn Jackson. Creating entanglement using integrals of motion. Phys. Rev. A, 97 (1): 013630, January 2018. 10.1103/PhysRevA.97.013630. URL https://link.aps.org/doi/10.1103/PhysRevA.97.013630. es_ES
dc.description.references Guido Pagano, Marco Mancini, Giacomo Cappellini, Pietro Lombardi, Florian Schäfer, Hui Hu, Xia-Ji Liu, Jacopo Catani, Carlo Sias, Massimo Inguscio, and Leonardo Fallani. A one-dimensional liquid of fermions with tunable spin. Nat. Phys., 10 (3): 198–201, 2014. 10.1038/nphys2878. URL https://doi.org/10.1038/nphys2878. es_ES
dc.description.references Akhilesh Pandey and Ramakrishna Ramaswamy. Level spacings for harmonic-oscillator systems. Phys. Rev. A, 43: 4237–4243, Apr 1991. 10.1103/PhysRevA.43.4237. URL http://link.aps.org/doi/10.1103/PhysRevA.43.4237. es_ES
dc.description.references J. P. Pique, Y. Chen, R. W. Field, and J. L. Kinsey. Chaos and dynamics on 0.5–300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum. Phys. Rev. Lett., 58: 475–478, Feb 1987. 10.1103/PhysRevLett.58.475. URL http://link.aps.org/doi/10.1103/PhysRevLett.58.475. es_ES
dc.description.references R. E. Prange. The spectral form factor is not self-averaging. Phys. Rev. Lett., 78: 2280, 1997. 10.1103/PhysRevLett.78.2280. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.2280. es_ES
dc.description.references Cindy Regal. Bringing order to neutral atom arrays. Science, 354 (6315): 972–973, 2016. 10.1126/science.aaj2145. es_ES
dc.description.references Irina Reshodko, Albert Benseny, Judit Romhányi, and Thomas Busch. Topological states in the Kronig–Penney model with arbitrary scattering potentials. New J. Phys., 21 (1): 013010, jan 2019. 10.1088/1367-2630/aaf9bf. URL https://doi.org/10.1088/1367-2630/aaf9bf. es_ES
dc.description.references Marcos Rigol and Alejandro Muramatsu. Ground-state properties of hard-core bosons confined on one-dimensional optical lattices. Phys. Rev. A, 72: 013604, Jul 2005. 10.1103/PhysRevA.72.013604. URL https://link.aps.org/doi/10.1103/PhysRevA.72.013604. es_ES
dc.description.references Daniel A. Roberts, Douglas Stanford, and Leonard Susskind. Localized shocks. JHEP, 2015 (3): 51, 2015. ISSN 1029-8479. 10.1007/JHEP03(2015)051. URL http://dx.doi.org/10.1007/JHEP03(2015)051. es_ES
dc.description.references Lea F. Santos, Francisco Pérez-Bernal, and E. Jonathan Torres-Herrera. Speck of chaos. Phys. Rev. Research, 2: 043034, Oct 2020. 10.1103/PhysRevResearch.2.043034. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043034. es_ES
dc.description.references S. Saskin, J. T. Wilson, B. Grinkemeyer, and J. D. Thompson. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 122: 143002, Apr 2019. 10.1103/PhysRevLett.122.143002. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.143002. es_ES
dc.description.references M. Schiulaz, M. Távora, and L. F. Santos. From few- to many-body quantum systems. Quantum Sci. Technol., 3: 044006, 2018. 10.1088/2058-9565/aad913. es_ES
dc.description.references Mauro Schiulaz, E. Jonathan Torres-Herrera, and Lea F. Santos. Thouless and relaxation time scales in many-body quantum systems. Phys. Rev. B, 99: 174313, May 2019. 10.1103/PhysRevB.99.174313. URL https://link.aps.org/doi/10.1103/PhysRevB.99.174313. es_ES
dc.description.references Mauro Schiulaz, E. Jonathan Torres-Herrera, Francisco Pérez-Bernal, and Lea F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems. Phys. Rev. B, 101: 174312, May 2020. 10.1103/PhysRevB.101.174312. URL https://link.aps.org/doi/10.1103/PhysRevB.101.174312. es_ES
dc.description.references J. Schnack and H. Feldmeier. Statistical properties of fermionic molecular dynamics. Nuc. Phys. A, 601 (2): 181 – 194, 1996. ISSN 0375-9474. 10.1016/0375-9474(95)00505-6. URL http://www.sciencedirect.com/science/article/pii/0375947495005056. es_ES
dc.description.references M. Schreiber, S. S. Hodgman, Pr. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science, 349 (6250): 842–845, 2015. ISSN 0036-8075. 10.1126/science.aaa7432. URL http://science.sciencemag.org/content/349/6250/842. es_ES
dc.description.references Kai-Niklas Schymik, Vincent Lienhard, Daniel Barredo, Pascal Scholl, Hannah Williams, Antoine Browaeys, and Thierry Lahaye. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A, 102: 063107, Dec 2020. 10.1103/PhysRevA.102.063107. es_ES
dc.description.references Friedhelm Serwane, Gerhard Zürn, Thomas Lompe, TB Ottenstein, AN Wenz, and S Jochim. Deterministic preparation of a tunable few-fermion system. Science, 332 (6027): 336–338, 2011. 10.1126/science.1201351. es_ES
dc.description.references G. B. Shaw. Degeneracy in the particle-in-a-box problem. J. Phys. A, 7 (13): 1537–1546, September 1974. ISSN 0301-0015. 10.1088/0305-4470/7/13/008. URL https://doi.org/10.1088/0305-4470/7/13/008. es_ES
dc.description.references Tomasz Sowiński and Miguel Ángel García-March. One-dimensional mixtures of several ultracold atoms: a review. Rep. Progr. Phys., 82 (10): 104401, 2019. 10.1088/1361-6633/ab3a80. es_ES
dc.description.references H-J. Stöckmann. Quantum Chaos: an introduction. Cambridge University Press, Cambridge, UK, 2006. 10.1017/CBO9780511524622. es_ES
dc.description.references E. J. Torres-Herrera and Lea F. Santos. Extended nonergodic states in disordered many-body quantum systems. Ann. Phys. (Berlin), 529: 1600284, 2017a. ISSN 1521-3889. 10.1002/andp.201600284. URL http://dx.doi.org/10.1002/andp.201600284. es_ES
dc.description.references E. J. Torres-Herrera and Lea F. Santos. Dynamical manifestations of quantum chaos: correlation hole and bulge. Philos. Trans. Royal Soc. A, 375 (2108): 20160434, 2017b. 10.1098/rsta.2016.0434. es_ES
dc.description.references E. J. Torres-Herrera, Antonio M. García-García, and Lea F. Santos. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator. Phys. Rev. B, 97: 060303, Feb 2018. 10.1103/PhysRevB.97.060303. URL https://link.aps.org/doi/10.1103/PhysRevB.97.060303. es_ES
dc.description.references C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nat. Phys., 14 (7): 745–749, 2018. ISSN 1745-2481. 10.1038/s41567-018-0137-5. URL https://doi.org/10.1038/s41567-018-0137-5. es_ES
dc.description.references J. W. Turner. On the quantum particle in a polyhedral box. J. Phys. A, 17 (14): 2791–2797, October 1984. ISSN 0305-4470. 10.1088/0305-4470/17/14/022. URL https://doi.org/10.1088/0305-4470/17/14/022. es_ES
dc.description.references Y. Wang, S. Subhankar, P. Bienias, M. Łacki, T-C. Tsui, M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, and S. L. Rolston. Dark state optical lattice with a subwavelength spatial structure. Phys. Rev. Lett., 120: 083601, Feb 2018. 10.1103/PhysRevLett.120.083601. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.083601. es_ES
dc.description.references AN Wenz, G Zürn, Simon Murmann, I Brouzos, T Lompe, and S Jochim. From few to many: Observing the formation of a Fermi sea one atom at a time. Science, 342 (6157): 457–460, 2013. 10.1126/science.1240516. es_ES
dc.description.references Joshua Wilkie and Paul Brumer. Time-dependent manifestations of quantum chaos. Phys. Rev. Lett., 67: 1185–1188, Sep 1991. 10.1103/PhysRevLett.67.1185. URL https://link.aps.org/doi/10.1103/PhysRevLett.67.1185. es_ES
dc.description.references Sebastian Will, Thorsten Best, Ulrich Schneider, Lucia Hackermüller, Dirk-Sören Lühmann, and Immanuel Bloch. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature, 465 (7295): 197–201, May 2010. ISSN 1476-4687. 10.1038/nature09036. URL https://doi.org/10.1038/nature09036. es_ES
dc.description.references Pablo R. Zangara, Axel D. Dente, E. J. Torres-Herrera, Horacio M. Pastawski, A. Iucci, and Lea F. Santos. Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E, 88: 032913, 2013. 10.1103/PhysRevE.88.032913. es_ES
dc.description.references V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi. The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep., 276: 85–176, 1996. 10.1016/S0370-1573(96)00007-5. es_ES
dc.description.references Guy Zisling, Lea F. Santos, and Yevgeny Bar Lev. How many particles make up a chaotic many-body quantum system? SciPost Phys., 10: 88, 2021. 10.21468/SciPostPhys.10.4.088. URL https://scipost.org/10.21468/SciPostPhys.10.4.088. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem