- -

Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers

Mostrar el registro completo del ítem

Romero Clausell, J.; Quintana-Gallardo, A.; Hidalgo Signes, C.; Serrano Lanzarote, AB. (2021). Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers. Materials and Structures. 54(1):1-16. https://doi.org/10.1617/s11527-020-01586-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189539

Ficheros en el ítem

Metadatos del ítem

Título: Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers
Autor: Romero Clausell, Joan Quintana-Gallardo, Alberto Hidalgo Signes, Carlos Serrano Lanzarote, Apolonia Begoña
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Fecha difusión:
Resumen:
[EN] Cement concrete is the most widely used construction material worldwide due to its favourable mechanical characteristics. However, it is responsible for 8% of the total carbon emissions in the world, which are generated ...[+]
Palabras clave: Earth construction , Clay concrete , Selfcompacted clay-based concrete , Life cycle assessment , Sustainability
Derechos de uso: Reserva de todos los derechos
Fuente:
Materials and Structures. (issn: 1359-5997 )
DOI: 10.1617/s11527-020-01586-6
Editorial:
Springer - RILEM Publishing
Versión del editor: https://doi.org/10.1617/s11527-020-01586-6
Tipo: Artículo

References

Gagg CR (2014) Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng Fail Anal 40:114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004

Andrew RM (2017) Global CO2 emissions from cement production. Earth SystSci Data Discuss. https://doi.org/10.5194/essd-2017-77

Climate Emergency Declaration - Call to declare a climate emergency, 2020 [+]
Gagg CR (2014) Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng Fail Anal 40:114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004

Andrew RM (2017) Global CO2 emissions from cement production. Earth SystSci Data Discuss. https://doi.org/10.5194/essd-2017-77

Climate Emergency Declaration - Call to declare a climate emergency, 2020

Hamard E, Cazacliu B, Razakamanantsoa A, Morel JC (2016) Cob, a vernacular earth construction process in the context of modern sustainable building. Build Environ 106:103–119. https://doi.org/10.1016/j.buildenv.2016.06.009

Moevus M, Jorand Y, Olagnon C, Maximilien S, Anger R, Fontaine L, Arnaud L (2016) Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mat Struct 49(4):1555–1568

Ouellet-Plamondon CM, Habert G (2016) Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J Clean Prod 117:160–168. https://doi.org/10.1016/j.jclepro.2015.12.048

Ben-Alon L, Loftness V, Harries KA, DiPietro G, Hameen EC (2019) Cradle to site life cycle assessment (lca) of natural vs conventional building materials: a case study on cob earthen material. Build Environ. https://doi.org/10.1016/j.buildenv.2019.05.028

Garro Galvez JM, Riedl B, Conner AH (1997) Analytical studies on tara tannins. Holzforschung. https://doi.org/10.1515/hfsg.1997.51.3.235

Nataraja MC, Sanjay MC (2013) Modified Bolomey equation for the design of concrete. J CivEng 41(1):59–69

Clausell JR, Signes CH, Solà GB, Lanzarote BS (2020) Improvement in the rheological and mechanical properties of clay mortar after adding CeratoniaSiliqua L. extracts. Constr Build Mater 237:117747. https://doi.org/10.1016/j.conbuildmat.2019.117747

UNE-EN 12350-2 (2020) Testing fresh concrete - Part 2: Slump test. Spanish association for normalization and certification (AENOR), Madrid

ISO 14040: Environmental management–life cycle assessment—Principles and framework,” Int. Organ. Stand., 2006

American Concrete Institute, “ACI 360R-92: Guide to Design of Slabs-on-Ground.”

EHE-08 (2008) Instrucción de hormigón estructural, Com. Perm. del Hormigón, p. 702

Db-Se-ae CTE (2003) CodigoTécnico de la Edificación, DocumentoBásico: Acciones en la Edificación. Ministerio de Fomento, Madrid

Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675

Pascual-González J, Guillén-Gosálbez G, Mateo-Sanz JM, Jiménez-Esteller L (2016) Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. J Clean Prod 112:359–368. https://doi.org/10.1016/j.jclepro.2015.05.129

Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod. https://doi.org/10.1016/j.jclepro.2008.04.007

Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2011.02.014

Portland Cemment Association (2019) How Cement is Made, Portland Cement Association.

United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Sand And Gravel Processing, p. 300

T Stengel and P Schießl, (2013) Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures, in Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. In: Pacheco-Torgal F, Cabeza LF, Labrincha J, de Magalhães A

(eds), Woodhead Publishing, 2014, pp. 528-564

Hon DN-S (2001) “Cellulose: Chemistry and Technology”, in Encyclopedia of Materials: Science and Technology. Elsevier, Second Edi., pp 1039–1045

United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Clay Processing. pp. 1–4

“Life Cycle Assessment of Sodium Hydroxide,” Aust. J. Basic Appl. Sci., 2013.

Castell JC, Sorolla S, Jorba M, Aribau J, Bacardit A, Ollé L (2013) Tara (CaesalpiniaSpinosa): The sustainable source of tannins for innovative tanning processes. J Am Leather ChemAssoc 108:221–230

Steubing B, Wernet G, Reinhard J, Bauer C, Moreno-Ruiz E (2016) The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-016-1109-6

European Platform on Life Cycle Assessment, Environmental Footprint.

Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675. https://doi.org/10.1016/j.jclepro.2008.04.007

Çankaya S, Pekey B (2019) A comparative life cycle assessment for sustainable cement production in Turkey. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109362

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem