Mostrar el registro sencillo del ítem
dc.contributor.author | Romero Clausell, Joan | es_ES |
dc.contributor.author | Quintana-Gallardo, Alberto | es_ES |
dc.contributor.author | Hidalgo Signes, Carlos | es_ES |
dc.contributor.author | Serrano Lanzarote, Apolonia Begoña | es_ES |
dc.date.accessioned | 2022-11-09T19:01:49Z | |
dc.date.available | 2022-11-09T19:01:49Z | |
dc.date.issued | 2021-01-12 | es_ES |
dc.identifier.issn | 1359-5997 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/189539 | |
dc.description.abstract | [EN] Cement concrete is the most widely used construction material worldwide due to its favourable mechanical characteristics. However, it is responsible for 8% of the total carbon emissions in the world, which are generated mainly during the production of clinker. Due to that fact, finding alternatives to cement for some applications in which it is not strictly needed should be a priority. In this study, a self-compacted clay-based concrete with natural superplasticizers based on natural tara tannins is presented. The main objective of the study is to determine if this clay-based concrete can be a sustainable alternative to conventional cement concrete as the main component in structural slabs. The methodology of the study is divided into two parts. First, the self-compacting clay concrete is characterized to determine its mechanical properties. Secondly, a comparative Life Cycle Assessment is conducted to determine the difference between the impacts generated by one square meter of self-compacting cement concrete and one of self-compacting clay concrete. The characterization of the material showed that this self-compacting clay concrete is suitable for some building elements such as structural slabs while avoiding the energy consumption needed to produce conventional concrete. The environmental impact results showed that using self-compacting clay concrete instead of the cement-based material decreases 90% of the carbon emissions and 80% of the overall environmental impact. After the completion of the study, it can be stated that the presented material is a sustainable alternative to conventional concrete for building structural slabs. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer - RILEM Publishing | es_ES |
dc.relation.ispartof | Materials and Structures | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Earth construction | es_ES |
dc.subject | Clay concrete | es_ES |
dc.subject | Selfcompacted clay-based concrete | es_ES |
dc.subject | Life cycle assessment | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | INGENIERIA DEL TERRENO | es_ES |
dc.title | Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1617/s11527-020-01586-6 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.description.bibliographicCitation | Romero Clausell, J.; Quintana-Gallardo, A.; Hidalgo Signes, C.; Serrano Lanzarote, AB. (2021). Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers. Materials and Structures. 54(1):1-16. https://doi.org/10.1617/s11527-020-01586-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1617/s11527-020-01586-6 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\425629 | es_ES |
dc.description.references | Gagg CR (2014) Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng Fail Anal 40:114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004 | es_ES |
dc.description.references | Andrew RM (2017) Global CO2 emissions from cement production. Earth SystSci Data Discuss. https://doi.org/10.5194/essd-2017-77 | es_ES |
dc.description.references | Climate Emergency Declaration - Call to declare a climate emergency, 2020 | es_ES |
dc.description.references | Hamard E, Cazacliu B, Razakamanantsoa A, Morel JC (2016) Cob, a vernacular earth construction process in the context of modern sustainable building. Build Environ 106:103–119. https://doi.org/10.1016/j.buildenv.2016.06.009 | es_ES |
dc.description.references | Moevus M, Jorand Y, Olagnon C, Maximilien S, Anger R, Fontaine L, Arnaud L (2016) Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mat Struct 49(4):1555–1568 | es_ES |
dc.description.references | Ouellet-Plamondon CM, Habert G (2016) Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J Clean Prod 117:160–168. https://doi.org/10.1016/j.jclepro.2015.12.048 | es_ES |
dc.description.references | Ben-Alon L, Loftness V, Harries KA, DiPietro G, Hameen EC (2019) Cradle to site life cycle assessment (lca) of natural vs conventional building materials: a case study on cob earthen material. Build Environ. https://doi.org/10.1016/j.buildenv.2019.05.028 | es_ES |
dc.description.references | Garro Galvez JM, Riedl B, Conner AH (1997) Analytical studies on tara tannins. Holzforschung. https://doi.org/10.1515/hfsg.1997.51.3.235 | es_ES |
dc.description.references | Nataraja MC, Sanjay MC (2013) Modified Bolomey equation for the design of concrete. J CivEng 41(1):59–69 | es_ES |
dc.description.references | Clausell JR, Signes CH, Solà GB, Lanzarote BS (2020) Improvement in the rheological and mechanical properties of clay mortar after adding CeratoniaSiliqua L. extracts. Constr Build Mater 237:117747. https://doi.org/10.1016/j.conbuildmat.2019.117747 | es_ES |
dc.description.references | UNE-EN 12350-2 (2020) Testing fresh concrete - Part 2: Slump test. Spanish association for normalization and certification (AENOR), Madrid | es_ES |
dc.description.references | ISO 14040: Environmental management–life cycle assessment—Principles and framework,” Int. Organ. Stand., 2006 | es_ES |
dc.description.references | American Concrete Institute, “ACI 360R-92: Guide to Design of Slabs-on-Ground.” | es_ES |
dc.description.references | EHE-08 (2008) Instrucción de hormigón estructural, Com. Perm. del Hormigón, p. 702 | es_ES |
dc.description.references | Db-Se-ae CTE (2003) CodigoTécnico de la Edificación, DocumentoBásico: Acciones en la Edificación. Ministerio de Fomento, Madrid | es_ES |
dc.description.references | Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675 | es_ES |
dc.description.references | Pascual-González J, Guillén-Gosálbez G, Mateo-Sanz JM, Jiménez-Esteller L (2016) Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. J Clean Prod 112:359–368. https://doi.org/10.1016/j.jclepro.2015.05.129 | es_ES |
dc.description.references | Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod. https://doi.org/10.1016/j.jclepro.2008.04.007 | es_ES |
dc.description.references | Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2011.02.014 | es_ES |
dc.description.references | Portland Cemment Association (2019) How Cement is Made, Portland Cement Association. | es_ES |
dc.description.references | United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Sand And Gravel Processing, p. 300 | es_ES |
dc.description.references | T Stengel and P Schießl, (2013) Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures, in Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. In: Pacheco-Torgal F, Cabeza LF, Labrincha J, de Magalhães A | es_ES |
dc.description.references | (eds), Woodhead Publishing, 2014, pp. 528-564 | es_ES |
dc.description.references | Hon DN-S (2001) “Cellulose: Chemistry and Technology”, in Encyclopedia of Materials: Science and Technology. Elsevier, Second Edi., pp 1039–1045 | es_ES |
dc.description.references | United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Clay Processing. pp. 1–4 | es_ES |
dc.description.references | “Life Cycle Assessment of Sodium Hydroxide,” Aust. J. Basic Appl. Sci., 2013. | es_ES |
dc.description.references | Castell JC, Sorolla S, Jorba M, Aribau J, Bacardit A, Ollé L (2013) Tara (CaesalpiniaSpinosa): The sustainable source of tannins for innovative tanning processes. J Am Leather ChemAssoc 108:221–230 | es_ES |
dc.description.references | Steubing B, Wernet G, Reinhard J, Bauer C, Moreno-Ruiz E (2016) The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-016-1109-6 | es_ES |
dc.description.references | European Platform on Life Cycle Assessment, Environmental Footprint. | es_ES |
dc.description.references | Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675. https://doi.org/10.1016/j.jclepro.2008.04.007 | es_ES |
dc.description.references | Çankaya S, Pekey B (2019) A comparative life cycle assessment for sustainable cement production in Turkey. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109362 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |