- -

Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero Clausell, Joan es_ES
dc.contributor.author Quintana-Gallardo, Alberto es_ES
dc.contributor.author Hidalgo Signes, Carlos es_ES
dc.contributor.author Serrano Lanzarote, Apolonia Begoña es_ES
dc.date.accessioned 2022-11-09T19:01:49Z
dc.date.available 2022-11-09T19:01:49Z
dc.date.issued 2021-01-12 es_ES
dc.identifier.issn 1359-5997 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189539
dc.description.abstract [EN] Cement concrete is the most widely used construction material worldwide due to its favourable mechanical characteristics. However, it is responsible for 8% of the total carbon emissions in the world, which are generated mainly during the production of clinker. Due to that fact, finding alternatives to cement for some applications in which it is not strictly needed should be a priority. In this study, a self-compacted clay-based concrete with natural superplasticizers based on natural tara tannins is presented. The main objective of the study is to determine if this clay-based concrete can be a sustainable alternative to conventional cement concrete as the main component in structural slabs. The methodology of the study is divided into two parts. First, the self-compacting clay concrete is characterized to determine its mechanical properties. Secondly, a comparative Life Cycle Assessment is conducted to determine the difference between the impacts generated by one square meter of self-compacting cement concrete and one of self-compacting clay concrete. The characterization of the material showed that this self-compacting clay concrete is suitable for some building elements such as structural slabs while avoiding the energy consumption needed to produce conventional concrete. The environmental impact results showed that using self-compacting clay concrete instead of the cement-based material decreases 90% of the carbon emissions and 80% of the overall environmental impact. After the completion of the study, it can be stated that the presented material is a sustainable alternative to conventional concrete for building structural slabs. es_ES
dc.language Inglés es_ES
dc.publisher Springer - RILEM Publishing es_ES
dc.relation.ispartof Materials and Structures es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Earth construction es_ES
dc.subject Clay concrete es_ES
dc.subject Selfcompacted clay-based concrete es_ES
dc.subject Life cycle assessment es_ES
dc.subject Sustainability es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1617/s11527-020-01586-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Romero Clausell, J.; Quintana-Gallardo, A.; Hidalgo Signes, C.; Serrano Lanzarote, AB. (2021). Environmental evaluation of a self-compacted clay based concrete with natural superplasticizers. Materials and Structures. 54(1):1-16. https://doi.org/10.1617/s11527-020-01586-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1617/s11527-020-01586-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\425629 es_ES
dc.description.references Gagg CR (2014) Cement and concrete as an engineering material: An historic appraisal and case study analysis. Eng Fail Anal 40:114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004 es_ES
dc.description.references Andrew RM (2017) Global CO2 emissions from cement production. Earth SystSci Data Discuss. https://doi.org/10.5194/essd-2017-77 es_ES
dc.description.references Climate Emergency Declaration - Call to declare a climate emergency, 2020 es_ES
dc.description.references Hamard E, Cazacliu B, Razakamanantsoa A, Morel JC (2016) Cob, a vernacular earth construction process in the context of modern sustainable building. Build Environ 106:103–119. https://doi.org/10.1016/j.buildenv.2016.06.009 es_ES
dc.description.references Moevus M, Jorand Y, Olagnon C, Maximilien S, Anger R, Fontaine L, Arnaud L (2016) Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mat Struct 49(4):1555–1568 es_ES
dc.description.references Ouellet-Plamondon CM, Habert G (2016) Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J Clean Prod 117:160–168. https://doi.org/10.1016/j.jclepro.2015.12.048 es_ES
dc.description.references Ben-Alon L, Loftness V, Harries KA, DiPietro G, Hameen EC (2019) Cradle to site life cycle assessment (lca) of natural vs conventional building materials: a case study on cob earthen material. Build Environ. https://doi.org/10.1016/j.buildenv.2019.05.028 es_ES
dc.description.references Garro Galvez JM, Riedl B, Conner AH (1997) Analytical studies on tara tannins. Holzforschung. https://doi.org/10.1515/hfsg.1997.51.3.235 es_ES
dc.description.references Nataraja MC, Sanjay MC (2013) Modified Bolomey equation for the design of concrete. J CivEng 41(1):59–69 es_ES
dc.description.references Clausell JR, Signes CH, Solà GB, Lanzarote BS (2020) Improvement in the rheological and mechanical properties of clay mortar after adding CeratoniaSiliqua L. extracts. Constr Build Mater 237:117747. https://doi.org/10.1016/j.conbuildmat.2019.117747 es_ES
dc.description.references UNE-EN 12350-2 (2020) Testing fresh concrete - Part 2: Slump test. Spanish association for normalization and certification (AENOR), Madrid es_ES
dc.description.references ISO 14040: Environmental management–life cycle assessment—Principles and framework,” Int. Organ. Stand., 2006 es_ES
dc.description.references American Concrete Institute, “ACI 360R-92: Guide to Design of Slabs-on-Ground.” es_ES
dc.description.references EHE-08 (2008) Instrucción de hormigón estructural, Com. Perm. del Hormigón, p. 702 es_ES
dc.description.references Db-Se-ae CTE (2003) CodigoTécnico de la Edificación, DocumentoBásico: Acciones en la Edificación. Ministerio de Fomento, Madrid es_ES
dc.description.references Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675 es_ES
dc.description.references Pascual-González J, Guillén-Gosálbez G, Mateo-Sanz JM, Jiménez-Esteller L (2016) Statistical analysis of the ecoinvent database to uncover relationships between life cycle impact assessment metrics. J Clean Prod 112:359–368. https://doi.org/10.1016/j.jclepro.2015.05.129 es_ES
dc.description.references Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod. https://doi.org/10.1016/j.jclepro.2008.04.007 es_ES
dc.description.references Ali MB, Saidur R, Hossain MS (2011) A review on emission analysis in cement industries. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2011.02.014 es_ES
dc.description.references Portland Cemment Association (2019) How Cement is Made, Portland Cement Association. es_ES
dc.description.references United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Sand And Gravel Processing, p. 300 es_ES
dc.description.references T Stengel and P Schießl, (2013) Life cycle assessment (LCA) of ultra high performance concrete (UHPC) structures, in Eco-Efficient Construction and Building Materials: Life Cycle Assessment (LCA), Eco-Labelling and Case Studies. In: Pacheco-Torgal F, Cabeza LF, Labrincha J, de Magalhães A es_ES
dc.description.references (eds), Woodhead Publishing, 2014, pp. 528-564 es_ES
dc.description.references Hon DN-S (2001) “Cellulose: Chemistry and Technology”, in Encyclopedia of Materials: Science and Technology. Elsevier, Second Edi., pp 1039–1045 es_ES
dc.description.references United States Environmental Protection Agency, (2003) Air Emissions Factors and Quantification. Clay Processing. pp. 1–4 es_ES
dc.description.references “Life Cycle Assessment of Sodium Hydroxide,” Aust. J. Basic Appl. Sci., 2013. es_ES
dc.description.references Castell JC, Sorolla S, Jorba M, Aribau J, Bacardit A, Ollé L (2013) Tara (CaesalpiniaSpinosa): The sustainable source of tannins for innovative tanning processes. J Am Leather ChemAssoc 108:221–230 es_ES
dc.description.references Steubing B, Wernet G, Reinhard J, Bauer C, Moreno-Ruiz E (2016) The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-016-1109-6 es_ES
dc.description.references European Platform on Life Cycle Assessment, Environmental Footprint. es_ES
dc.description.references Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675. https://doi.org/10.1016/j.jclepro.2008.04.007 es_ES
dc.description.references Çankaya S, Pekey B (2019) A comparative life cycle assessment for sustainable cement production in Turkey. J Environ Manage. https://doi.org/10.1016/j.jenvman.2019.109362 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem