- -

Can unlisted firms benefit from market information? A data-driven approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can unlisted firms benefit from market information? A data-driven approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bitetto, Alessandro es_ES
dc.contributor.author Filomeni, Stefano es_ES
dc.contributor.author Modina, Michele es_ES
dc.date.accessioned 2022-11-10T08:49:16Z
dc.date.available 2022-11-10T08:49:16Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189549
dc.description.abstract [EN] We employ a sample of 10,136 Italian micro-, small-, and mid-sized enterprises (MSMEs) that borrow from 113 cooperative banks to examine whether market pricing of public firms adds additional information to accounting measures in predicting default of private firms. Specifically, we first match the asset prices of listed firms following a data-driven clustering by means of Neural Networks Autoencoder so to evaluate the firm-wise probability of default (PD) of MSMEs. Then, we adopt three statistical techniques, namely linear models, multivariate adaptive regression spline, and random forest to assess the performance of the models and to explain the relevance of each predictor. Our results provide novel evidence that market information represents a crucial indicator in predicting corporate default of unlisted firms. Indeed, we show a significant improvement of the model performance, both on class-specific (F1-score for defaulted class) and overall metrics (AUC) when using market information in credit risk assessment, in addition to accounting information. Moreover, by taking advantage of global and local variable importance technique we prove that the increase in performance is effectively attributable to market information, highlighting its relevant effect in predicting corporate default. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Credit risk es_ES
dc.subject Distance to default es_ES
dc.subject Machine learning es_ES
dc.subject Market information es_ES
dc.subject Probability of default es_ES
dc.title Can unlisted firms benefit from market information? A data-driven approach es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2022.2022.15045
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bitetto, A.; Filomeni, S.; Modina, M. (2022). Can unlisted firms benefit from market information? A data-driven approach. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 65-72. https://doi.org/10.4995/CARMA2022.2022.15045 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15045 es_ES
dc.description.upvformatpinicio 65 es_ES
dc.description.upvformatpfin 72 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15045 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem