- -

Cape Town road traffic accident analysis: Utilising supervised learning techniques and discussing their effectiveness

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cape Town road traffic accident analysis: Utilising supervised learning techniques and discussing their effectiveness

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Du Toit, Christo es_ES
dc.contributor.author Salau, Sulaiman es_ES
dc.contributor.author Er, Sebnem es_ES
dc.date.accessioned 2022-11-10T13:09:22Z
dc.date.available 2022-11-10T13:09:22Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189574
dc.description.abstract [EN] Road traffic accidents (RTA) are a major cause of death and injury around the world. The use of Supervised learning (SL) methods to understand the frequency and injury-severity of RTAs are of utmost importance in designing appropriate interventions. Data on RTAs that occurred in the city of Cape Town during 2015-2017 are used for this study. The data contain the injury-severity (no injury, slight, serious and fatal injury) of the RTAs as well as several accident-related variables. Additional locational and situational variables were added to the dataset. Four training datasets were analysed: the original imbalanced data, data with the minority class over-sampled, data with the majority class under-sampled and data with synthetically created observations. The performance of different SL methods were compared using accuracy, recall, precision and F1 score evaluation metrics and based on the average recall the ANN was selected as the best performing model on the validation data. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Road traffic accidents es_ES
dc.subject Supervised learning methods es_ES
dc.subject Imbalanced data es_ES
dc.title Cape Town road traffic accident analysis: Utilising supervised learning techniques and discussing their effectiveness es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2022.2022.15041
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Du Toit, C.; Salau, S.; Er, S. (2022). Cape Town road traffic accident analysis: Utilising supervised learning techniques and discussing their effectiveness. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 57-64. https://doi.org/10.4995/CARMA2022.2022.15041 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15041 es_ES
dc.description.upvformatpinicio 57 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15041 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem