- -

Applying NLP techniques to characterize what makes an online review trustworthy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying NLP techniques to characterize what makes an online review trustworthy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero, José Carlos es_ES
dc.contributor.author Olmedilla Fernández, María es_ES
dc.contributor.author Martínez-Torres, Rocío es_ES
dc.contributor.author Toral, Sergio es_ES
dc.date.accessioned 2022-11-10T13:40:19Z
dc.date.available 2022-11-10T13:40:19Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189580
dc.description.abstract [EN] Users spend a significantly amount of time reading and exchanging reviews online in e‑commerce and eWOM communities that help them with their purchase decisions. Source credibility theory is gaining more importance as some online reviews are currently being damaged by those fake reviews that promote an untruthful image not only of the products but also of those online websites. Thus, trustworthiness of online reviews is a key aspect not only for the users that want to make more informed decisions regarding the products, but also for the websites whose credibility might be affected. In this regard, this study proposes a classification system using two Natural Language Processing (NLP) models that can predict trustworthy online reviews (helpful and truthful) applied to the product category “Cell phones & accessories” of Amazon. After using a keyword extractor among those trustworthy online reviews we can characterize their most important features. The results reveal that those features are related to brands, physical and technical features and the UX of the mobile phones. es_ES
dc.description.sponsorship This work was supported by Proyecto Aplicacion de Redes Generativas Antagonicas para Combatir la Manipulación de Clientes Online (REACT) Ref. PID2020-114527RB-I00 financiado por MCIN/ AEI /10.13039/501100011033 es_ES
dc.format.extent 7 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Source credibility es_ES
dc.subject Trustworthiness es_ES
dc.subject Helpfulness es_ES
dc.subject Online reviews es_ES
dc.subject Classifier es_ES
dc.subject Natural Language Processing es_ES
dc.title Applying NLP techniques to characterize what makes an online review trustworthy es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2022.2022.15085
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114527RB-I00/ES/APLICACION DE REDES GENERATIVAS ANTAGONICAS PARA COMBATIR LA MANIPULACION DE CLIENTES ONLINE (REACT)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Romero, JC.; Olmedilla Fernández, M.; Martínez-Torres, R.; Toral, S. (2022). Applying NLP techniques to characterize what makes an online review trustworthy. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 189-195. https://doi.org/10.4995/CARMA2022.2022.15085 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15085 es_ES
dc.description.upvformatpinicio 189 es_ES
dc.description.upvformatpfin 195 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15085 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem