- -

Confining isolated atoms and clusters in crystalline porous materials for catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Confining isolated atoms and clusters in crystalline porous materials for catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Lichen es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2022-11-10T19:02:27Z
dc.date.available 2022-11-10T19:02:27Z
dc.date.issued 2021-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/189595
dc.description.abstract [EN] Structure-reactivity relationships for nanoparticle-based catalysts have been greatly influenced by the study of catalytic materials with either supported isolated metal atoms or metal clusters comprising a few atoms. The stability of these metal species is a key challenge because they can sinter into large nanoparticles under harsh reaction conditions. However, stability can be achieved by confining the nanoparticles in crystalline porous materials (such as zeolites and metal-organic frameworks). More importantly, the interaction between the metal species and the porous framework may modulate the geometric and electronic structures of the subnanometric metal species, especially for metal clusters. This confinement effect can induce shape-selective catalysis or different chemoselectivity from that of metal atoms supported on open-structure solid carriers. In this Review, we discuss the structural features, synthesis methodologies, characterization techniques and catalytic applications of subnanometric species confined in zeolites and metal-organic frameworks. We make a critical comparison between confined and non-confined isolated atoms and metal clusters, and provide future perspectives for the field. es_ES
dc.description.sponsorship We are grateful for financial support from the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish Government through the Severo Ochoa Program (SEV-2016-0683). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Reviews Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Confining isolated atoms and clusters in crystalline porous materials for catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41578-020-00250-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Liu, L.; Corma Canós, A. (2021). Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nature Reviews Materials. 6(3):244-263. https://doi.org/10.1038/s41578-020-00250-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41578-020-00250-3 es_ES
dc.description.upvformatpinicio 244 es_ES
dc.description.upvformatpfin 263 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2058-8437 es_ES
dc.relation.pasarela S\463095 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). es_ES
dc.description.references Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018). es_ES
dc.description.references Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012). es_ES
dc.description.references Takei, T. et al. Heterogeneous catalysis by gold. Adv. Catal. 55, 1–126 (2012). es_ES
dc.description.references Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994). es_ES
dc.description.references Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998). es_ES
dc.description.references Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014). es_ES
dc.description.references Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019). es_ES
dc.description.references Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017). es_ES
dc.description.references Sachtler, W. M. H. Metal clusters in zeolites: an intriguing class of catalysts. Acc. Chem. Res. 26, 383–387 (1993). es_ES
dc.description.references Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018). es_ES
dc.description.references Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017). es_ES
dc.description.references Parkinson, G. S. Single-atom catalysis: how structure influences catalytic performance. Catal. Lett. 149, 1137–1146 (2019). es_ES
dc.description.references Fako, E., Łodziana, Z. & López, N. Comparative single atom heterogeneous catalysts (SAHCs) on different platforms: a theoretical approach. Catal. Sci. Technol. 7, 4285–4293 (2017). es_ES
dc.description.references Hu, P. et al. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014). es_ES
dc.description.references Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016). es_ES
dc.description.references Pelletier, J. D. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016). es_ES
dc.description.references Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. Engl. 55, 10800–10805 (2016). es_ES
dc.description.references Chen, Z. et al. Tunability and scalability of single-atom catalysts based on carbon nitride. ACS Sustain. Chem. Eng. 7, 5223–5230 (2019). es_ES
dc.description.references Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018). es_ES
dc.description.references Benaglia, M. & Puglisi, A. Catalyst Immobilization: Methods and Applications (Wiley-VCH, 2020). es_ES
dc.description.references Ozin, G. A. & Gil, C. Intrazeolite organometallics and coordination complexes: internal versus external confinement of metal guests. Chem. Rev. 89, 1749–1764 (1989). es_ES
dc.description.references Martini, A. et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem. Sci. 8, 6836–6851 (2017). es_ES
dc.description.references Khivantsev, K. et al. Effect of Si/Al ratio and Rh precursor used on the synthesis of HY zeolite-supported rhodium carbonyl hydride complexes. J. Phys. Chem. C 119, 17166–17181 (2015). es_ES
dc.description.references Moreno-González, M., Millán, R., Concepción, P., Blasco, T. & Boronat, M. Spectroscopic evidence and density functional theory (DFT) analysis of low-temperature oxidation of Cu+ to Cu2+ NOx in Cu-CHA catalysts: implications for the SCR-NOx reaction mechanism. ACS Catal. 9, 2725–2738 (2019). es_ES
dc.description.references Borfecchia, E. et al. Cu-CHA - a model system for applied selective redox catalysis. Chem. Soc. Rev. 47, 8097–8133 (2018). es_ES
dc.description.references Ji, P., Feng, X., Veroneau, S. S., Song, Y. & Lin, W. Trivalent zirconium and hafnium metal–organic frameworks for catalytic 1,4-dearomative additions of pyridines and quinolines. J. Am. Chem. Soc. 139, 15600–15603 (2017). es_ES
dc.description.references Bernales, V., Ortuno, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018). es_ES
dc.description.references Liu, K. et al. Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates. Nat. Commun. 10, 996 (2019). es_ES
dc.description.references Sun, G., Alexandrova, A. N. & Sautet, P. Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization. J. Chem. Phys. 151, 194703 (2019). es_ES
dc.description.references Tosoni, S. & Pacchioni, G. Oxide‐supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11, 73–89 (2018). es_ES
dc.description.references Stakheev, A. Y. & Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl. Catal. A Gen. 188, 3–35 (1999). es_ES
dc.description.references Vilhelmsen, L. B., Walton, K. S. & Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 134, 12807–12816 (2012). es_ES
dc.description.references Tian, Z. et al. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 123, 22114–22122 (2019). es_ES
dc.description.references Dou, L. et al. Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 122, 8901–8909 (2018). es_ES
dc.description.references Xiao, J., Pan, X., Zhang, F., Li, H. & Bao, X. Size-dependence of carbon nanotube confinement in catalysis. Chem. Sci. 8, 278–283 (2017). es_ES
dc.description.references Xiao, J., Pan, X., Guo, S., Ren, P. & Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137, 477–482 (2015). es_ES
dc.description.references Hakkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008). es_ES
dc.description.references Ferrari, A. M., Neyman, K. M., Belling, T., Mayer, M. & Rösch, N. Small platinum clusters in zeolites: a density functional study of CO adsorption on electronically modified models. J. Phys. Chem. B 103, 216–226 (1999). es_ES
dc.description.references Ferrari, A. M. et al. Faujasite-supported Ir4 clusters: a density functional model study of metal–zeolite interactions. J. Phys. Chem. B 103, 5311–5319 (1999). es_ES
dc.description.references Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019). es_ES
dc.description.references Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012). es_ES
dc.description.references Eckstein, S. et al. Influence of hydronium ions in zeolites on sorption. Angew. Chem. Int. Ed. 58, 3450–3455 (2019). es_ES
dc.description.references Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017). es_ES
dc.description.references Wannakao, S., Maihom, T., Probst, M., Limtrakul, J. & Kongpatpanich, K. Porous materials as a platform for highly uniform single-atom catalysts: tuning the electronic structure for the low-temperature oxidation of carbon monoxide. J. Phys. Chem. C 120, 19686–19697 (2016). es_ES
dc.description.references Koningsberger, D. C., de Graaf, J., Mojet, B. L., Ramaker, D. E. & Miller, J. T. The metal–support interaction in Pt/Y zeolite: evidence for a shift in energy of metal d-valence orbitals by Pt–H shape resonance and atomic XAFS spectroscopy. Appl. Catal. A Gen. 191, 205–220 (2000). es_ES
dc.description.references Treesukol, P., Srisuk, K., Limtrakul, J. & Truong, T. N. Nature of the metal–support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite. J. Phys. Chem. B 109, 11940–11945 (2005). es_ES
dc.description.references Mikhailov, M. N., Kustov, L. M. & Kazansky, V. B. The state and reactivity of Pt6 particles in ZSM-5 zeolite. Catal. Lett. 120, 8–13 (2007). es_ES
dc.description.references Grybos, R., Benco, L., Bucko, T. & Hafner, J. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pdn (n = 1–6) clusters in mordenite. J. Chem. Phys. 130, 104503 (2009). es_ES
dc.description.references Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M. & Yoshizawa, K. Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2(μ-O)]2+-exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal. 7, 3741–3751 (2017). es_ES
dc.description.references Szécsényi, Á. et al. Breaking linear scaling relationships with secondary interactions in confined space: a case study of methane oxidation by Fe/ZSM-5 zeolite. ACS Catal. 9, 9276–9284 (2019). es_ES
dc.description.references Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015). es_ES
dc.description.references Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014). es_ES
dc.description.references Goellner, J. F., Gates, B. C., Vayssilov, G. N. & Rösch, N. Structure and bonding of a site-isolated transition metal complex: Rhodium dicarbonyl in highly dealuminated zeolite Y. J. Am. Chem. Soc. 122, 8056–8066 (2000). es_ES
dc.description.references de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: Characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001). es_ES
dc.description.references Schreier, M., Teren, S., Belcher, L., Regalbuto, J. R. & Miller, J. T. The nature of ‘overexchanged’ copper and platinum on zeolites. Nanotechnology 16, S582–S591 (2005). es_ES
dc.description.references Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014). es_ES
dc.description.references Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013). es_ES
dc.description.references Balkus K. J. & Gabrielov A. G. in Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science Vol. 6 (eds Herron N. & Corbin D. R.) 159–184 (Springer, 1995). es_ES
dc.description.references Kawi, S. & Gates, B. C. in Clusters and Colloids. From Theory to Applications (ed. Schmid G.) 299–372 (Wiley, 1994). es_ES
dc.description.references Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004). es_ES
dc.description.references Kuehl, G. H. Shape selective catalyst from zeolite alpha and use thereof. US patent 4,299,686 (1981). es_ES
dc.description.references Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010). es_ES
dc.description.references Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012). es_ES
dc.description.references Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016). es_ES
dc.description.references Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016). es_ES
dc.description.references Liu, Y. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019). es_ES
dc.description.references Sun, Q. et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570–18576 (2019). es_ES
dc.description.references Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017). es_ES
dc.description.references Zhang, Y., Kubů, M., Mazur, M. & Čejka, J. Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous Mesoporous Mater. 279, 364–370 (2019). es_ES
dc.description.references Moliner, M., Gabay, J., Kliewer, C., Serna, P. & Corma, A. Trapping of metal atoms and metal clusters by chabazite under severe redox stress. ACS Catal. 8, 9520–9528 (2018). es_ES
dc.description.references Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018). es_ES
dc.description.references Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019). es_ES
dc.description.references Zhang, X. et al. Catalytic chemoselective functionalization of methane in a metal–organic framework. Nat. Catal. 1, 356–362 (2018). es_ES
dc.description.references Brozek, C. K. & Dinca, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013). es_ES
dc.description.references Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252–13255 (2011). es_ES
dc.description.references Yang, D. & Gates, B. C. Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal. 9, 1779–1798 (2019). es_ES
dc.description.references Kim, I. S. et al. Sinter-resistant platinum catalyst supported by metal–organic framework. Angew. Chem. Int. Ed. Engl. 57, 909–913 (2018). es_ES
dc.description.references Luo, Y. et al. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: a facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 30, 1704576 (2018). es_ES
dc.description.references Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12±x inside a metal–organic framework. J. Am. Chem. Soc. 141, 13962–13969 (2019). es_ES
dc.description.references Fortea-Perez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017). es_ES
dc.description.references Mon, M. et al. Synthesis of densely packaged, ultrasmall Pt20 clusters within a thioether-functionalized MOF: catalytic activity in industrial reactions at low temperature. Angew. Chem. Int. Ed. Engl. 57, 6186–6191 (2018). es_ES
dc.description.references Sá, J. et al. Redispersion of gold supported on oxides. ACS Catal. 2, 552–560 (2012). es_ES
dc.description.references Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005). es_ES
dc.description.references Zhou, W., Wachs, I. E. & Kiely, C. J. Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr. Opin. Solid State Mater. Sci. 16, 10–22 (2012). es_ES
dc.description.references Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019). es_ES
dc.description.references Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012). es_ES
dc.description.references Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020). es_ES
dc.description.references Fang, X. et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 30, 1705112 (2018). es_ES
dc.description.references Rivero-Crespo, M. A. et al. Confined Pt11+ water clusters in a MOF catalyze the low-temperature water–gas shift reaction with both CO2 oxygen atoms coming from water. Angew. Chem. Int. Ed. 57, 17094–17099 (2018). es_ES
dc.description.references Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019). es_ES
dc.description.references Henninen, T. R., Bon, M., Wang, F., Passerone, D. & Erni, R. The structure of sub-nm platinum clusters at elevated temperatures. Angew. Chem. Int. Ed. 59, 839–845 (2020). es_ES
dc.description.references Miao, J., Ercius, P. & Billinge, S. J. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016). es_ES
dc.description.references Wang, X. N. et al. Crystallographic visualization of post-synthetic nickel clusters into metal–organic framework. J. Am. Chem. Soc. 141, 13654–13663 (2019). es_ES
dc.description.references Lovejoy, T. C. et al. Single atom identification by energy dispersive X-ray spectroscopy. Appl. Phys. Lett. 100, 154101 (2012). es_ES
dc.description.references Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017). es_ES
dc.description.references Tizei, L. H. G. et al. Single atom spectroscopy: decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield. Ultramicroscopy 160, 239–246 (2016). es_ES
dc.description.references Seidman, D. N. Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007). es_ES
dc.description.references Barroo, C., Akey, A. J. & Bell, D. C. Atom probe tomography for catalysis applications: a review. Appl. Sci. 9, 2721 (2019). es_ES
dc.description.references Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015). es_ES
dc.description.references Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017). es_ES
dc.description.references Jiang, K. et al. Transition-metal singly atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017). es_ES
dc.description.references Schmidt, J. E., Peng, L., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale chemical imaging of zeolites using atom probe tomography. Angew. Chem. Int. Ed. 57, 10422–10435 (2018). es_ES
dc.description.references Timoshenko, J., Duan, Z., Henkelman, G., Crooks, R. M. & Frenkel, A. I. Solving the structure and dynamics of metal nanoparticles by combining X-ray absorption fine structure spectroscopy and atomistic structure simulations. Annu. Rev. Anal. Chem. 12, 501–522 (2019). es_ES
dc.description.references Kulkarni, A., Chi, M., Ortalan, V., Browning, N. D. & Gates, B. C. Atomic resolution of the structure of a metal-support interface: triosmium clusters on MgO(110). Angew. Chem. Int. Ed. 49, 10089–10092 (2010). es_ES
dc.description.references Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1, 221–227 (2018). es_ES
dc.description.references Yuan, N. et al. Probing the evolution of palladium species in Pd@MOF catalysts during the heck coupling reaction: an operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 140, 8206–8217 (2018). es_ES
dc.description.references Timoshenko, J. & Frenkel, A. I. “Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors. ACS Catal. 9, 10192–10211 (2019). es_ES
dc.description.references Timoshenko, J. et al. Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning. J. Phys. Chem. C 122, 21686–21693 (2018). es_ES
dc.description.references Timoshenko, J. et al. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett. 19, 520–529 (2019). es_ES
dc.description.references Göltl, F. et al. UV–Vis and photoluminescence spectroscopy to understand the coordination of Cu cations in the zeolite SSZ-13. Chem. Mater. 31, 9582–9592 (2019). es_ES
dc.description.references Fenwick, O. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017–1022 (2016). es_ES
dc.description.references Shimizu, K.-i et al. Formation and redispersion of silver clusters in Ag-MFI zeolite as investigated by time-resolved QXAFS and UV–Vis. J. Phys. Chem. C 111, 1683–1688 (2007). es_ES
dc.description.references Thang, H. V., Pacchioni, G., DeRita, L. & Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 367, 104–114 (2018). es_ES
dc.description.references Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995). es_ES
dc.description.references Hoffman, A. S., Fang, C. Y. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016). es_ES
dc.description.references Lucier, B. E. G., Chen, S. & Huang, Y. Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018). es_ES
dc.description.references Lewis, J. D. et al. Distinguishing active site identity in Sn-beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 8, 3076–3086 (2018). es_ES
dc.description.references Brunner, E. & Rauche, M. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks. Chem. Sci. 11, 4297–4304 (2020). es_ES
dc.description.references Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202003349 (2020). es_ES
dc.description.references Juneau, M. et al. Characterization of metal-zeolite composite catalysts: determining the environment of the active phase. ChemCatChem 12, 1826–1852 (2020). es_ES
dc.description.references Nemeth, L. & Bare, S. R. Science and technology of framework metal-containing zeotype catalysts. Adv. Catal. 57, 1–97 (2014). es_ES
dc.description.references Pal, D. B., Chand, R., Upadhyay, S. N. & Mishra, P. K. Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018). es_ES
dc.description.references Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014). es_ES
dc.description.references Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015). es_ES
dc.description.references Carter, J. H. et al. Activation and deactivation of gold/ceria–zirconia in the low-temperature water–gas shift reaction. Angew. Chem. Int. Ed. Engl. 56, 16037–16041 (2017). es_ES
dc.description.references Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017). es_ES
dc.description.references Huang, K., Miller, J. B., Huber, G. W., Dumesic, J. A. & Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2, 349–365 (2018). es_ES
dc.description.references Wang, L. et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21, 35–41 (1993). es_ES
dc.description.references Ding, W., Li, S., Meitzner, G. D. & Iglesia, E. Methane conversion to aromatics on Mo/H-ZSM5: structure of molybdenum species in working catalysts. J. Phys. Chem. B 105, 506–513 (2001). es_ES
dc.description.references Kumar, A., Song, K., Liu, L., Han, Y. & Bhan, A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts. Angew. Chem. Int. Ed. Engl. 57, 15577–15582 (2018). es_ES
dc.description.references Li, G., Vollmer, I., Liu, C., Gascon, J. & Pidko, E. A. Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study. ACS Catal. 9, 8731–8737 (2019). es_ES
dc.description.references Ismagilov, Z. R., Matus, E. V. & Tsikoza, L. T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ. Sci. 1, 526–541 (2008). es_ES
dc.description.references Spivey, J. J. & Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 43, 792–803 (2014). es_ES
dc.description.references Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016). es_ES
dc.description.references Hou, Y., Ogasawara, S., Fukuoka, A. & Kobayashi, H. Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature selective oxidation of methane to syngas. Catal. Sci. Technol. 7, 6132–6139 (2017). es_ES
dc.description.references Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019). es_ES
dc.description.references Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol — A critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017). es_ES
dc.description.references Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017). es_ES
dc.description.references Narsimhan, K., Iyoki, K., Dinh, K. & Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016). es_ES
dc.description.references Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019). es_ES
dc.description.references Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017). es_ES
dc.description.references Zheng, J. et al. Selective methane oxidation to methanol on Cu-Oxo dimers stabilized by zirconia nodes of an NU-1000 metal–organic framework. J. Am. Chem. Soc. 141, 9292–9304 (2019). es_ES
dc.description.references Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015). es_ES
dc.description.references Bozbag, S. E. et al. Direct stepwise oxidation of methane to methanol over Cu–SiO2. ACS Catal. 8, 5721–5731 (2018). es_ES
dc.description.references Meyet, J. et al. Monomeric copper(II) sites supported on alumina selectively convert methane to methanol. Angew. Chem. Int. Ed. 58, 9841–9845 (2019). es_ES
dc.description.references Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019). es_ES
dc.description.references Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017). es_ES
dc.description.references Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018). es_ES
dc.description.references Bruijnincx, P. C. & Weckhuysen, B. M. Shale gas revolution: an opportunity for the production of biobased chemicals? Angew. Chem. Int. Ed. 52, 11980–11987 (2013). es_ES
dc.description.references Stangland, E. E. Shale gas implications for C2-C3 olefin production: incumbent and future technology. Annu. Rev. Chem. Biomol. Eng. 9, 341–364 (2018). es_ES
dc.description.references Li, Z. et al. Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent. Sci. 3, 31–38 (2017). es_ES
dc.description.references Fukunaga, T. & Katsuno, H. Halogen-promoted Pt/KL zeolite catalyst for the production of aromatic hydrocarbons from light naphtha. Catal. Surv. Asia 14, 96–102 (2010). es_ES
dc.description.references Meriaudeau, P. & Naccache, C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal. Rev. 39, 5–48 (1997). es_ES
dc.description.references Xu, D. et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. J. Catal. 365, 163–173 (2018). es_ES
dc.description.references Yang, D. et al. Tuning Zr6 metal–organic framework (MOF) nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts. ACS Catal. 6, 235–247 (2015). es_ES
dc.description.references Liu, J. et al. Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 9, 3198–3207 (2019). es_ES
dc.description.references Song, Y. et al. Metal–organic framework nodes support single-site nickel(II) hydride catalysts for the hydrogenolysis of aryl ethers. ACS Catal. 9, 1578–1583 (2019). es_ES
dc.description.references He, J., Zhao, C. & Lercher, J. A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012). es_ES
dc.description.references Ji, P. et al. Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 139, 7004–7011 (2017). es_ES
dc.description.references Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016). es_ES
dc.description.references Westerhaus, F. A. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 5, 537–543 (2013). es_ES
dc.description.references Liu, L., Gao, F., Concepción, P. & Corma, A. A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J. Catal. 350, 218–225 (2017). es_ES
dc.description.references Liu, L., Concepción, P. & Corma, A. Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 340, 1–9 (2016). es_ES
dc.description.references Ji, S. et al. Atomically dispersed ruthenium species inside metal–organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. Engl. 58, 4271–4275 (2019). es_ES
dc.description.references An, B. et al. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709–717 (2019). es_ES
dc.description.references Cheng, K. et al. Impact of the spatial organization of bifunctional metal–zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem. Int. Ed. 59, 3592–3600 (2020). es_ES
dc.description.references Hayashi, T., Tanaka, K. & Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998). es_ES
dc.description.references Huang, J., Takei, T., Akita, T., Ohashi, H. & Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B Environ. 95, 430–438 (2010). es_ES
dc.description.references Taylor, B., Lauterbach, J. & Delgass, W. N. Gas-phase epoxidation of propylene over small gold ensembles on TS-1. Appl. Catal. A 291, 188–198 (2005). es_ES
dc.description.references Wells, D. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: a DFT study. J. Catal. 225, 69–77 (2004). es_ES
dc.description.references Liu, L., Arenal, R., Meira, D. M. & Corma, A. Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chem. Commun. 55, 1607–1610 (2019). es_ES
dc.description.references Bal, R., Tada, M., Sasaki, T. & Iwasawa, Y. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed. Engl. 45, 448–452 (2006). es_ES
dc.description.references Tada, M. et al. Novel Re-cluster/HZSM-5 catalyst for highly selective phenol synthesis from benzene and O2:  performance and reaction mechanism. J. Phys. Chem. C 111, 10095–10104 (2007). es_ES
dc.description.references Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. & Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015). es_ES
dc.description.references Kwak, J. H. et al. Size-dependent catalytic performance of CuO on γ-Al2O3: NO reduction versus NH3 oxidation. ACS Catal. 2, 1432–1440 (2012). es_ES
dc.description.references Vennestrøm, P. N. R. et al. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3. ACS Catal. 3, 2158–2161 (2013). es_ES
dc.description.references Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017). es_ES
dc.description.references Liu, A. et al. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 9, 9840–9851 (2019). es_ES
dc.description.references Martínez-Franco, R., Moliner, M. & Corma, A. Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J. Catal. 319, 36–43 (2014). es_ES
dc.description.references Khivantsev, K. et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57, 16672–16677 (2018). es_ES
dc.description.references Moliner, M. & Corma, A. From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines. React. Chem. Eng. 4, 223–234 (2019). es_ES
dc.description.references Di Iorio, J. R. et al. The dynamic nature of Brønsted acid sites in Cu–zeolites during NOx selective catalytic reduction: quantification by gas-phase ammonia titration. Top. Catal. 58, 424–434 (2015). es_ES
dc.description.references Ye, X. et al. Deactivation of Cu-exchanged automotive-emission NH3-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy. Angew. Chem. Int. Ed. 132, 15740–15747 (2020). es_ES
dc.description.references Artioli, N., Lobo, R. F. & Iglesia, E. Catalysis by confinement: enthalpic stabilization of NO oxidation transition states by micropororous and mesoporous siliceous materials. J. Phys. Chem. C 117, 20666–20674 (2013). es_ES
dc.description.references Fernández, E. et al. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 9, 11530–11541 (2019). es_ES
dc.description.references Levasseur, B., Petit, C. & Bandosz, T. J. Reactive adsorption of NO2 on copper-based metal–organic framework and graphite oxide/metal–organic framework composites. ACS Appl. Mater. Interfaces 2, 3606–3613 (2010). es_ES
dc.description.references Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat. Rev. Chem. 3, 108–118 (2019). es_ES
dc.description.references Ghashghaee, M. Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev. Chem. Eng. 34, 595–655 (2018). es_ES
dc.description.references Martínez, A., Arribas, M. A., Concepción, P. & Moussa, S. New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl. Catal. A Gen. 467, 509–518 (2013). es_ES
dc.description.references Moussa, S., Concepción, P., Arribas, M. A. & Martínez, A. Nature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 8, 3903–3912 (2018). es_ES
dc.description.references Metzger, E. D., Brozek, C. K., Comito, R. J. & Dinca, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016). es_ES
dc.description.references Metzger, E. D., Comito, R. J., Hendon, C. H. & Dinca, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017). es_ES
dc.description.references Rozhko, E., Bavykina, A., Osadchii, D., Makkee, M. & Gascon, J. Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. J. Catal. 345, 270–280 (2017). es_ES
dc.description.references Díaz, U. & Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord. Chem. Rev. 311, 85–124 (2016). es_ES
dc.description.references Hulea, V. Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal. 8, 3263–3279 (2018). es_ES
dc.description.references Adam, R. et al. Self-assembly of catalytically active supramolecular coordination compounds within metal–organic frameworks. J. Am. Chem. Soc. 141, 10350–10360 (2019). es_ES
dc.description.references Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008). es_ES
dc.description.references Chen, Z., Guan, Z., Li, M., Yang, Q. & Li, C. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew. Chem. Int. Ed. 50, 4913–4917 (2011). es_ES
dc.description.references Ma, L., Falkowski, J. M., Abney, C. & Lin, W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2, 838–846 (2010). es_ES
dc.description.references Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017). es_ES
dc.description.references Garcia-Garcia, P., Moreno, J. M., Diaz, U., Bruix, M. & Corma, A. Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nat. Commun. 7, 10835 (2016). es_ES
dc.description.references Zhang, X., Llabrés i Xamena, F. X. & Corma, A. Gold(III)–metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265, 155–160 (2009). es_ES
dc.description.references Lee, J. S. et al. Architectural stabilization of a gold(III) catalyst in metal-organic frameworks. Chem 6, 142–152 (2020). es_ES
dc.description.references Schejn, A. et al. Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 5, 1829–1839 (2015). es_ES
dc.description.references Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014). es_ES
dc.description.references Liang, Z., Qu, C., Xia, D., Zou, R. & Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. Engl. 57, 9604–9633 (2018). es_ES
dc.description.references Sastre, F., Fornes, V., Corma, A. & Garcia, H. Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites. J. Am. Chem. Soc. 133, 17257–17261 (2011). es_ES
dc.description.references Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. Engl. 50, 8299–8303 (2011). es_ES
dc.description.references Zuo, Q. et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019). es_ES
dc.description.references Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55, 14924–14950 (2016). es_ES
dc.description.references Huang, Q. et al. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 7, 53–63 (2020). es_ES
dc.description.references Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017). es_ES
dc.description.references Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016). es_ES
dc.description.references Miner, E. M. et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016). es_ES
dc.description.references Peng, P. et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, eaaw2322 (2019). es_ES
dc.description.references Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015). es_ES
dc.description.references Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015). es_ES
dc.description.references Zheng, W., Liu, M. & Lee, L. Y. S. Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81–92 (2019). es_ES
dc.description.references Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019). es_ES
dc.description.references Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012). es_ES
dc.description.references Petit, C. & Bandosz, T. J. MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv. Mater. 21, 4753–4757 (2009). es_ES
dc.description.references De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019). es_ES
dc.description.references Varela, A. S. et al. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019). es_ES
dc.description.references Liu, L. et al. Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl. Catal. B Environ. 235, 186–196 (2018). es_ES
dc.description.references Wang, L., Yi, Y., Wu, C., Guo, H. & Tu, X. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew. Chem. Int. Ed. Engl. 56, 13679–13683 (2017). es_ES
dc.description.references Thomas, J. M., Johnson, B. F., Raja, R., Sankar, G. & Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30 (2003). es_ES
dc.description.references Sun, J. & Bao, X. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem. Eur. J. 14, 7478–7488 (2008). es_ES
dc.description.references Cui, T. L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016). es_ES
dc.description.references Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018). es_ES
dc.description.references Mielby, J. et al. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed. 53, 12513–12516 (2014). es_ES
dc.description.references Park, H. D., Dinca, M. & Roman-Leshkov, Y. Continuous-flow production of succinic anhydrides via catalytic β-lactone carbonylation by Co(CO)4⊂Cr-MIL-101. J. Am. Chem. Soc. 140, 10669–10672 (2018). es_ES
dc.description.references Lan, G. et al. Metal–organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc. 141, 15767–15772 (2019). es_ES
dc.description.references Wu, Y. et al. Synergy of electron transfer and electron utilization via metal–organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catal. 10, 2894–2905 (2020). es_ES
dc.description.references Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020). es_ES
dc.description.references Rode, E., Davis, M. E. & Hanson, B. E. Propylene hydroformylation on rhodium zeolites X and Y: I. Catalytic activity. J. Catal. 96, 563–573 (1985). es_ES
dc.description.references Van, Vu, T. et al. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Micropor. Mesopor. Mater. 177, 135–142 (2013). es_ES
dc.description.references Takahashi, N. Comparison of ethylene with propylene hydroformylation over a Rh-Y zeolite catalyst under atmospheric pressure. J. Catal. 85, 89–97 (1984). es_ES
dc.description.references Zhang, J. et al. Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. J. Catal. 387, 196–206 (2020). es_ES
dc.description.references Sun, Q. et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 137, 5204–5209 (2015). es_ES
dc.description.references Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 18, 2995–3005 (2016). es_ES
dc.description.references Corma, A. Heterogeneous catalysis: understanding for designing, and designing for applications. Angew. Chem. Int. Ed. 55, 6112–6113 (2016). es_ES
dc.description.references Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017). es_ES
dc.description.references Li, C. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat. Catal. 1, 547–554 (2018). es_ES
dc.description.references Gallego, E. M., Paris, C., Cantin, A., Moliner, M. & Corma, A. Conceptual similarities between zeolites and artificial enzymes. Chem. Sci. 10, 8009–8015 (2019). es_ES
dc.description.references Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015). es_ES
dc.description.references Bayram, E. et al. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal. 5, 3514–3527 (2015). es_ES
dc.description.references Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011). es_ES
dc.description.references Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020). es_ES
dc.description.references Wei, Y., Parmentier, T. E., de Jong, K. P. & Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44, 7234–7261 (2015). es_ES
dc.description.references Furukawa, H., Muller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015). es_ES
dc.description.references Perez-Ramirez, J., Christensen, C. H., Egeblad, K., Christensen, C. H. & Groen, J. C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008). es_ES
dc.description.references Čejka, J. & Mintova, S. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. 49, 457–509 (2007). es_ES
dc.description.references Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015). es_ES
dc.description.references Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012). es_ES
dc.description.references Diaz, U., Brunel, D. & Corma, A. Catalysis using multifunctional organosiliceous hybrid materials. Chem. Soc. Rev. 42, 4083–4097 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem