- -

Confining isolated atoms and clusters in crystalline porous materials for catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Confining isolated atoms and clusters in crystalline porous materials for catalysis

Mostrar el registro completo del ítem

Liu, L.; Corma Canós, A. (2021). Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nature Reviews Materials. 6(3):244-263. https://doi.org/10.1038/s41578-020-00250-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189595

Ficheros en el ítem

Metadatos del ítem

Título: Confining isolated atoms and clusters in crystalline porous materials for catalysis
Autor: Liu, Lichen Corma Canós, Avelino
Fecha difusión:
Resumen:
[EN] Structure-reactivity relationships for nanoparticle-based catalysts have been greatly influenced by the study of catalytic materials with either supported isolated metal atoms or metal clusters comprising a few atoms. ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Nature Reviews Materials. (eissn: 2058-8437 )
DOI: 10.1038/s41578-020-00250-3
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41578-020-00250-3
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683//Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia/
Agradecimientos:
We are grateful for financial support from the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish Government through the Severo Ochoa Program (SEV-2016-0683).
Tipo: Artículo

References

Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012). [+]
Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

Takei, T. et al. Heterogeneous catalysis by gold. Adv. Catal. 55, 1–126 (2012).

Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994).

Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).

Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

Sachtler, W. M. H. Metal clusters in zeolites: an intriguing class of catalysts. Acc. Chem. Res. 26, 383–387 (1993).

Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018).

Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

Parkinson, G. S. Single-atom catalysis: how structure influences catalytic performance. Catal. Lett. 149, 1137–1146 (2019).

Fako, E., Łodziana, Z. & López, N. Comparative single atom heterogeneous catalysts (SAHCs) on different platforms: a theoretical approach. Catal. Sci. Technol. 7, 4285–4293 (2017).

Hu, P. et al. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014).

Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

Pelletier, J. D. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016).

Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. Engl. 55, 10800–10805 (2016).

Chen, Z. et al. Tunability and scalability of single-atom catalysts based on carbon nitride. ACS Sustain. Chem. Eng. 7, 5223–5230 (2019).

Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018).

Benaglia, M. & Puglisi, A. Catalyst Immobilization: Methods and Applications (Wiley-VCH, 2020).

Ozin, G. A. & Gil, C. Intrazeolite organometallics and coordination complexes: internal versus external confinement of metal guests. Chem. Rev. 89, 1749–1764 (1989).

Martini, A. et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem. Sci. 8, 6836–6851 (2017).

Khivantsev, K. et al. Effect of Si/Al ratio and Rh precursor used on the synthesis of HY zeolite-supported rhodium carbonyl hydride complexes. J. Phys. Chem. C 119, 17166–17181 (2015).

Moreno-González, M., Millán, R., Concepción, P., Blasco, T. & Boronat, M. Spectroscopic evidence and density functional theory (DFT) analysis of low-temperature oxidation of Cu+ to Cu2+ NOx in Cu-CHA catalysts: implications for the SCR-NOx reaction mechanism. ACS Catal. 9, 2725–2738 (2019).

Borfecchia, E. et al. Cu-CHA - a model system for applied selective redox catalysis. Chem. Soc. Rev. 47, 8097–8133 (2018).

Ji, P., Feng, X., Veroneau, S. S., Song, Y. & Lin, W. Trivalent zirconium and hafnium metal–organic frameworks for catalytic 1,4-dearomative additions of pyridines and quinolines. J. Am. Chem. Soc. 139, 15600–15603 (2017).

Bernales, V., Ortuno, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018).

Liu, K. et al. Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates. Nat. Commun. 10, 996 (2019).

Sun, G., Alexandrova, A. N. & Sautet, P. Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization. J. Chem. Phys. 151, 194703 (2019).

Tosoni, S. & Pacchioni, G. Oxide‐supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11, 73–89 (2018).

Stakheev, A. Y. & Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl. Catal. A Gen. 188, 3–35 (1999).

Vilhelmsen, L. B., Walton, K. S. & Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 134, 12807–12816 (2012).

Tian, Z. et al. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 123, 22114–22122 (2019).

Dou, L. et al. Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 122, 8901–8909 (2018).

Xiao, J., Pan, X., Zhang, F., Li, H. & Bao, X. Size-dependence of carbon nanotube confinement in catalysis. Chem. Sci. 8, 278–283 (2017).

Xiao, J., Pan, X., Guo, S., Ren, P. & Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137, 477–482 (2015).

Hakkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

Ferrari, A. M., Neyman, K. M., Belling, T., Mayer, M. & Rösch, N. Small platinum clusters in zeolites: a density functional study of CO adsorption on electronically modified models. J. Phys. Chem. B 103, 216–226 (1999).

Ferrari, A. M. et al. Faujasite-supported Ir4 clusters: a density functional model study of metal–zeolite interactions. J. Phys. Chem. B 103, 5311–5319 (1999).

Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019).

Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012).

Eckstein, S. et al. Influence of hydronium ions in zeolites on sorption. Angew. Chem. Int. Ed. 58, 3450–3455 (2019).

Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017).

Wannakao, S., Maihom, T., Probst, M., Limtrakul, J. & Kongpatpanich, K. Porous materials as a platform for highly uniform single-atom catalysts: tuning the electronic structure for the low-temperature oxidation of carbon monoxide. J. Phys. Chem. C 120, 19686–19697 (2016).

Koningsberger, D. C., de Graaf, J., Mojet, B. L., Ramaker, D. E. & Miller, J. T. The metal–support interaction in Pt/Y zeolite: evidence for a shift in energy of metal d-valence orbitals by Pt–H shape resonance and atomic XAFS spectroscopy. Appl. Catal. A Gen. 191, 205–220 (2000).

Treesukol, P., Srisuk, K., Limtrakul, J. & Truong, T. N. Nature of the metal–support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite. J. Phys. Chem. B 109, 11940–11945 (2005).

Mikhailov, M. N., Kustov, L. M. & Kazansky, V. B. The state and reactivity of Pt6 particles in ZSM-5 zeolite. Catal. Lett. 120, 8–13 (2007).

Grybos, R., Benco, L., Bucko, T. & Hafner, J. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pdn (n = 1–6) clusters in mordenite. J. Chem. Phys. 130, 104503 (2009).

Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M. & Yoshizawa, K. Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2(μ-O)]2+-exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal. 7, 3741–3751 (2017).

Szécsényi, Á. et al. Breaking linear scaling relationships with secondary interactions in confined space: a case study of methane oxidation by Fe/ZSM-5 zeolite. ACS Catal. 9, 9276–9284 (2019).

Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015).

Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014).

Goellner, J. F., Gates, B. C., Vayssilov, G. N. & Rösch, N. Structure and bonding of a site-isolated transition metal complex: Rhodium dicarbonyl in highly dealuminated zeolite Y. J. Am. Chem. Soc. 122, 8056–8066 (2000).

de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: Characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001).

Schreier, M., Teren, S., Belcher, L., Regalbuto, J. R. & Miller, J. T. The nature of ‘overexchanged’ copper and platinum on zeolites. Nanotechnology 16, S582–S591 (2005).

Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).

Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).

Balkus K. J. & Gabrielov A. G. in Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science Vol. 6 (eds Herron N. & Corbin D. R.) 159–184 (Springer, 1995).

Kawi, S. & Gates, B. C. in Clusters and Colloids. From Theory to Applications (ed. Schmid G.) 299–372 (Wiley, 1994).

Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004).

Kuehl, G. H. Shape selective catalyst from zeolite alpha and use thereof. US patent 4,299,686 (1981).

Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).

Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).

Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

Liu, Y. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019).

Sun, Q. et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570–18576 (2019).

Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

Zhang, Y., Kubů, M., Mazur, M. & Čejka, J. Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous Mesoporous Mater. 279, 364–370 (2019).

Moliner, M., Gabay, J., Kliewer, C., Serna, P. & Corma, A. Trapping of metal atoms and metal clusters by chabazite under severe redox stress. ACS Catal. 8, 9520–9528 (2018).

Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

Zhang, X. et al. Catalytic chemoselective functionalization of methane in a metal–organic framework. Nat. Catal. 1, 356–362 (2018).

Brozek, C. K. & Dinca, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013).

Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252–13255 (2011).

Yang, D. & Gates, B. C. Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal. 9, 1779–1798 (2019).

Kim, I. S. et al. Sinter-resistant platinum catalyst supported by metal–organic framework. Angew. Chem. Int. Ed. Engl. 57, 909–913 (2018).

Luo, Y. et al. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: a facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 30, 1704576 (2018).

Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12±x inside a metal–organic framework. J. Am. Chem. Soc. 141, 13962–13969 (2019).

Fortea-Perez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017).

Mon, M. et al. Synthesis of densely packaged, ultrasmall Pt20 clusters within a thioether-functionalized MOF: catalytic activity in industrial reactions at low temperature. Angew. Chem. Int. Ed. Engl. 57, 6186–6191 (2018).

Sá, J. et al. Redispersion of gold supported on oxides. ACS Catal. 2, 552–560 (2012).

Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005).

Zhou, W., Wachs, I. E. & Kiely, C. J. Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr. Opin. Solid State Mater. Sci. 16, 10–22 (2012).

Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019).

Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).

Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020).

Fang, X. et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 30, 1705112 (2018).

Rivero-Crespo, M. A. et al. Confined Pt11+ water clusters in a MOF catalyze the low-temperature water–gas shift reaction with both CO2 oxygen atoms coming from water. Angew. Chem. Int. Ed. 57, 17094–17099 (2018).

Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

Henninen, T. R., Bon, M., Wang, F., Passerone, D. & Erni, R. The structure of sub-nm platinum clusters at elevated temperatures. Angew. Chem. Int. Ed. 59, 839–845 (2020).

Miao, J., Ercius, P. & Billinge, S. J. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

Wang, X. N. et al. Crystallographic visualization of post-synthetic nickel clusters into metal–organic framework. J. Am. Chem. Soc. 141, 13654–13663 (2019).

Lovejoy, T. C. et al. Single atom identification by energy dispersive X-ray spectroscopy. Appl. Phys. Lett. 100, 154101 (2012).

Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

Tizei, L. H. G. et al. Single atom spectroscopy: decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield. Ultramicroscopy 160, 239–246 (2016).

Seidman, D. N. Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007).

Barroo, C., Akey, A. J. & Bell, D. C. Atom probe tomography for catalysis applications: a review. Appl. Sci. 9, 2721 (2019).

Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015).

Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017).

Jiang, K. et al. Transition-metal singly atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

Schmidt, J. E., Peng, L., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale chemical imaging of zeolites using atom probe tomography. Angew. Chem. Int. Ed. 57, 10422–10435 (2018).

Timoshenko, J., Duan, Z., Henkelman, G., Crooks, R. M. & Frenkel, A. I. Solving the structure and dynamics of metal nanoparticles by combining X-ray absorption fine structure spectroscopy and atomistic structure simulations. Annu. Rev. Anal. Chem. 12, 501–522 (2019).

Kulkarni, A., Chi, M., Ortalan, V., Browning, N. D. & Gates, B. C. Atomic resolution of the structure of a metal-support interface: triosmium clusters on MgO(110). Angew. Chem. Int. Ed. 49, 10089–10092 (2010).

Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1, 221–227 (2018).

Yuan, N. et al. Probing the evolution of palladium species in Pd@MOF catalysts during the heck coupling reaction: an operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 140, 8206–8217 (2018).

Timoshenko, J. & Frenkel, A. I. “Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors. ACS Catal. 9, 10192–10211 (2019).

Timoshenko, J. et al. Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning. J. Phys. Chem. C 122, 21686–21693 (2018).

Timoshenko, J. et al. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett. 19, 520–529 (2019).

Göltl, F. et al. UV–Vis and photoluminescence spectroscopy to understand the coordination of Cu cations in the zeolite SSZ-13. Chem. Mater. 31, 9582–9592 (2019).

Fenwick, O. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017–1022 (2016).

Shimizu, K.-i et al. Formation and redispersion of silver clusters in Ag-MFI zeolite as investigated by time-resolved QXAFS and UV–Vis. J. Phys. Chem. C 111, 1683–1688 (2007).

Thang, H. V., Pacchioni, G., DeRita, L. & Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 367, 104–114 (2018).

Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).

Hoffman, A. S., Fang, C. Y. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016).

Lucier, B. E. G., Chen, S. & Huang, Y. Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018).

Lewis, J. D. et al. Distinguishing active site identity in Sn-beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 8, 3076–3086 (2018).

Brunner, E. & Rauche, M. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks. Chem. Sci. 11, 4297–4304 (2020).

Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202003349 (2020).

Juneau, M. et al. Characterization of metal-zeolite composite catalysts: determining the environment of the active phase. ChemCatChem 12, 1826–1852 (2020).

Nemeth, L. & Bare, S. R. Science and technology of framework metal-containing zeotype catalysts. Adv. Catal. 57, 1–97 (2014).

Pal, D. B., Chand, R., Upadhyay, S. N. & Mishra, P. K. Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018).

Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

Carter, J. H. et al. Activation and deactivation of gold/ceria–zirconia in the low-temperature water–gas shift reaction. Angew. Chem. Int. Ed. Engl. 56, 16037–16041 (2017).

Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

Huang, K., Miller, J. B., Huber, G. W., Dumesic, J. A. & Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2, 349–365 (2018).

Wang, L. et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21, 35–41 (1993).

Ding, W., Li, S., Meitzner, G. D. & Iglesia, E. Methane conversion to aromatics on Mo/H-ZSM5: structure of molybdenum species in working catalysts. J. Phys. Chem. B 105, 506–513 (2001).

Kumar, A., Song, K., Liu, L., Han, Y. & Bhan, A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts. Angew. Chem. Int. Ed. Engl. 57, 15577–15582 (2018).

Li, G., Vollmer, I., Liu, C., Gascon, J. & Pidko, E. A. Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study. ACS Catal. 9, 8731–8737 (2019).

Ismagilov, Z. R., Matus, E. V. & Tsikoza, L. T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ. Sci. 1, 526–541 (2008).

Spivey, J. J. & Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 43, 792–803 (2014).

Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

Hou, Y., Ogasawara, S., Fukuoka, A. & Kobayashi, H. Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature selective oxidation of methane to syngas. Catal. Sci. Technol. 7, 6132–6139 (2017).

Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019).

Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol — A critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

Narsimhan, K., Iyoki, K., Dinh, K. & Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

Zheng, J. et al. Selective methane oxidation to methanol on Cu-Oxo dimers stabilized by zirconia nodes of an NU-1000 metal–organic framework. J. Am. Chem. Soc. 141, 9292–9304 (2019).

Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

Bozbag, S. E. et al. Direct stepwise oxidation of methane to methanol over Cu–SiO2. ACS Catal. 8, 5721–5731 (2018).

Meyet, J. et al. Monomeric copper(II) sites supported on alumina selectively convert methane to methanol. Angew. Chem. Int. Ed. 58, 9841–9845 (2019).

Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019).

Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

Bruijnincx, P. C. & Weckhuysen, B. M. Shale gas revolution: an opportunity for the production of biobased chemicals? Angew. Chem. Int. Ed. 52, 11980–11987 (2013).

Stangland, E. E. Shale gas implications for C2-C3 olefin production: incumbent and future technology. Annu. Rev. Chem. Biomol. Eng. 9, 341–364 (2018).

Li, Z. et al. Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent. Sci. 3, 31–38 (2017).

Fukunaga, T. & Katsuno, H. Halogen-promoted Pt/KL zeolite catalyst for the production of aromatic hydrocarbons from light naphtha. Catal. Surv. Asia 14, 96–102 (2010).

Meriaudeau, P. & Naccache, C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal. Rev. 39, 5–48 (1997).

Xu, D. et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. J. Catal. 365, 163–173 (2018).

Yang, D. et al. Tuning Zr6 metal–organic framework (MOF) nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts. ACS Catal. 6, 235–247 (2015).

Liu, J. et al. Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 9, 3198–3207 (2019).

Song, Y. et al. Metal–organic framework nodes support single-site nickel(II) hydride catalysts for the hydrogenolysis of aryl ethers. ACS Catal. 9, 1578–1583 (2019).

He, J., Zhao, C. & Lercher, J. A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012).

Ji, P. et al. Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 139, 7004–7011 (2017).

Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

Westerhaus, F. A. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 5, 537–543 (2013).

Liu, L., Gao, F., Concepción, P. & Corma, A. A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J. Catal. 350, 218–225 (2017).

Liu, L., Concepción, P. & Corma, A. Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 340, 1–9 (2016).

Ji, S. et al. Atomically dispersed ruthenium species inside metal–organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. Engl. 58, 4271–4275 (2019).

An, B. et al. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709–717 (2019).

Cheng, K. et al. Impact of the spatial organization of bifunctional metal–zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem. Int. Ed. 59, 3592–3600 (2020).

Hayashi, T., Tanaka, K. & Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998).

Huang, J., Takei, T., Akita, T., Ohashi, H. & Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B Environ. 95, 430–438 (2010).

Taylor, B., Lauterbach, J. & Delgass, W. N. Gas-phase epoxidation of propylene over small gold ensembles on TS-1. Appl. Catal. A 291, 188–198 (2005).

Wells, D. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: a DFT study. J. Catal. 225, 69–77 (2004).

Liu, L., Arenal, R., Meira, D. M. & Corma, A. Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chem. Commun. 55, 1607–1610 (2019).

Bal, R., Tada, M., Sasaki, T. & Iwasawa, Y. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed. Engl. 45, 448–452 (2006).

Tada, M. et al. Novel Re-cluster/HZSM-5 catalyst for highly selective phenol synthesis from benzene and O2:  performance and reaction mechanism. J. Phys. Chem. C 111, 10095–10104 (2007).

Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. & Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015).

Kwak, J. H. et al. Size-dependent catalytic performance of CuO on γ-Al2O3: NO reduction versus NH3 oxidation. ACS Catal. 2, 1432–1440 (2012).

Vennestrøm, P. N. R. et al. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3. ACS Catal. 3, 2158–2161 (2013).

Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

Liu, A. et al. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 9, 9840–9851 (2019).

Martínez-Franco, R., Moliner, M. & Corma, A. Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J. Catal. 319, 36–43 (2014).

Khivantsev, K. et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57, 16672–16677 (2018).

Moliner, M. & Corma, A. From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines. React. Chem. Eng. 4, 223–234 (2019).

Di Iorio, J. R. et al. The dynamic nature of Brønsted acid sites in Cu–zeolites during NOx selective catalytic reduction: quantification by gas-phase ammonia titration. Top. Catal. 58, 424–434 (2015).

Ye, X. et al. Deactivation of Cu-exchanged automotive-emission NH3-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy. Angew. Chem. Int. Ed. 132, 15740–15747 (2020).

Artioli, N., Lobo, R. F. & Iglesia, E. Catalysis by confinement: enthalpic stabilization of NO oxidation transition states by micropororous and mesoporous siliceous materials. J. Phys. Chem. C 117, 20666–20674 (2013).

Fernández, E. et al. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 9, 11530–11541 (2019).

Levasseur, B., Petit, C. & Bandosz, T. J. Reactive adsorption of NO2 on copper-based metal–organic framework and graphite oxide/metal–organic framework composites. ACS Appl. Mater. Interfaces 2, 3606–3613 (2010).

Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat. Rev. Chem. 3, 108–118 (2019).

Ghashghaee, M. Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev. Chem. Eng. 34, 595–655 (2018).

Martínez, A., Arribas, M. A., Concepción, P. & Moussa, S. New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl. Catal. A Gen. 467, 509–518 (2013).

Moussa, S., Concepción, P., Arribas, M. A. & Martínez, A. Nature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 8, 3903–3912 (2018).

Metzger, E. D., Brozek, C. K., Comito, R. J. & Dinca, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

Metzger, E. D., Comito, R. J., Hendon, C. H. & Dinca, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017).

Rozhko, E., Bavykina, A., Osadchii, D., Makkee, M. & Gascon, J. Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. J. Catal. 345, 270–280 (2017).

Díaz, U. & Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord. Chem. Rev. 311, 85–124 (2016).

Hulea, V. Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal. 8, 3263–3279 (2018).

Adam, R. et al. Self-assembly of catalytically active supramolecular coordination compounds within metal–organic frameworks. J. Am. Chem. Soc. 141, 10350–10360 (2019).

Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008).

Chen, Z., Guan, Z., Li, M., Yang, Q. & Li, C. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew. Chem. Int. Ed. 50, 4913–4917 (2011).

Ma, L., Falkowski, J. M., Abney, C. & Lin, W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2, 838–846 (2010).

Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017).

Garcia-Garcia, P., Moreno, J. M., Diaz, U., Bruix, M. & Corma, A. Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nat. Commun. 7, 10835 (2016).

Zhang, X., Llabrés i Xamena, F. X. & Corma, A. Gold(III)–metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265, 155–160 (2009).

Lee, J. S. et al. Architectural stabilization of a gold(III) catalyst in metal-organic frameworks. Chem 6, 142–152 (2020).

Schejn, A. et al. Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 5, 1829–1839 (2015).

Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

Liang, Z., Qu, C., Xia, D., Zou, R. & Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. Engl. 57, 9604–9633 (2018).

Sastre, F., Fornes, V., Corma, A. & Garcia, H. Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites. J. Am. Chem. Soc. 133, 17257–17261 (2011).

Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. Engl. 50, 8299–8303 (2011).

Zuo, Q. et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019).

Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55, 14924–14950 (2016).

Huang, Q. et al. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 7, 53–63 (2020).

Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

Miner, E. M. et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016).

Peng, P. et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, eaaw2322 (2019).

Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

Zheng, W., Liu, M. & Lee, L. Y. S. Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81–92 (2019).

Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012).

Petit, C. & Bandosz, T. J. MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv. Mater. 21, 4753–4757 (2009).

De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

Varela, A. S. et al. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019).

Liu, L. et al. Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl. Catal. B Environ. 235, 186–196 (2018).

Wang, L., Yi, Y., Wu, C., Guo, H. & Tu, X. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew. Chem. Int. Ed. Engl. 56, 13679–13683 (2017).

Thomas, J. M., Johnson, B. F., Raja, R., Sankar, G. & Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30 (2003).

Sun, J. & Bao, X. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem. Eur. J. 14, 7478–7488 (2008).

Cui, T. L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

Mielby, J. et al. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed. 53, 12513–12516 (2014).

Park, H. D., Dinca, M. & Roman-Leshkov, Y. Continuous-flow production of succinic anhydrides via catalytic β-lactone carbonylation by Co(CO)4⊂Cr-MIL-101. J. Am. Chem. Soc. 140, 10669–10672 (2018).

Lan, G. et al. Metal–organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc. 141, 15767–15772 (2019).

Wu, Y. et al. Synergy of electron transfer and electron utilization via metal–organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catal. 10, 2894–2905 (2020).

Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020).

Rode, E., Davis, M. E. & Hanson, B. E. Propylene hydroformylation on rhodium zeolites X and Y: I. Catalytic activity. J. Catal. 96, 563–573 (1985).

Van, Vu, T. et al. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Micropor. Mesopor. Mater. 177, 135–142 (2013).

Takahashi, N. Comparison of ethylene with propylene hydroformylation over a Rh-Y zeolite catalyst under atmospheric pressure. J. Catal. 85, 89–97 (1984).

Zhang, J. et al. Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. J. Catal. 387, 196–206 (2020).

Sun, Q. et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 137, 5204–5209 (2015).

Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 18, 2995–3005 (2016).

Corma, A. Heterogeneous catalysis: understanding for designing, and designing for applications. Angew. Chem. Int. Ed. 55, 6112–6113 (2016).

Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

Li, C. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat. Catal. 1, 547–554 (2018).

Gallego, E. M., Paris, C., Cantin, A., Moliner, M. & Corma, A. Conceptual similarities between zeolites and artificial enzymes. Chem. Sci. 10, 8009–8015 (2019).

Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

Bayram, E. et al. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal. 5, 3514–3527 (2015).

Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020).

Wei, Y., Parmentier, T. E., de Jong, K. P. & Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44, 7234–7261 (2015).

Furukawa, H., Muller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

Perez-Ramirez, J., Christensen, C. H., Egeblad, K., Christensen, C. H. & Groen, J. C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008).

Čejka, J. & Mintova, S. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. 49, 457–509 (2007).

Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

Diaz, U., Brunel, D. & Corma, A. Catalysis using multifunctional organosiliceous hybrid materials. Chem. Soc. Rev. 42, 4083–4097 (2013).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem