- -

Unsupervised Learning for the Analysis and Detection of Fraud in the Insurance Industry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unsupervised Learning for the Analysis and Detection of Fraud in the Insurance Industry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvarez-Jareño, José A. es_ES
dc.contributor.author Pavía, José Manuel es_ES
dc.date.accessioned 2022-11-14T13:12:40Z
dc.date.available 2022-11-14T13:12:40Z
dc.date.issued 2022-09-20
dc.identifier.isbn 9788413960180
dc.identifier.uri http://hdl.handle.net/10251/189706
dc.description.abstract [EN] Analysis and detection of fraud in the insurance sector has traditionally been carried out through supervised learning. The main problem is that the data presents a strong imbalance and techniques are used to balance the variable. Unsupervised learning is an alternative to consider, especially anomaly detection methodologies. If the fraud variable has a significant imbalance, then it can be treated as an anomaly. That is, the behavior of the fraudsters must be different from the rest of the insured.The main methodologies used are Isolation Forest, Attribute wise learning for scoring outliers (ALSO), Trimmed K-means, Autoencoders (neural networks) and Principal Component Analysis. The objective is through dimensionality reduction techniques to obtain a model with which to make predictions. The instances that present greater differences between the real values and the values estimated with this methodology will be considered anomalies and analyzed as if they were fraud.The results obtained show that these methodologies can be used as a complement to supervised learning. The assembly of models will allow the integration of both methodologies and improve the detection of fraud in the insurance sector. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022)
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Insurance es_ES
dc.subject Fraud es_ES
dc.subject Unsupervised learning es_ES
dc.subject Isolation Forest es_ES
dc.subject ALSO es_ES
dc.subject Autoencoders es_ES
dc.title Unsupervised Learning for the Analysis and Detection of Fraud in the Insurance Industry es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alvarez-Jareño, JA.; Pavía, JM. (2022). Unsupervised Learning for the Analysis and Detection of Fraud in the Insurance Industry. En 4th International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat Politècnica de València. 279-279. http://hdl.handle.net/10251/189706 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2022 - 4th International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Junio 29-Julio 01, 2022 es_ES
dc.relation.conferenceplace Valencia, España
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15024 es_ES
dc.description.upvformatpinicio 279 es_ES
dc.description.upvformatpfin 279 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\15024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem