Mostrar el registro completo del ítem
Sáez Silvestre, C.; Romero, N.; Conejero, JA.; Garcia-Gomez, JM. (2021). Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset. Journal of the American Medical Informatics Association. 28(2):360-364. https://doi.org/10.1093/jamia/ocaa258
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/189724
Título: | Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset | |
Autor: | Romero, Nekane | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Objective: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1093/jamia/ocaa258 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work was supported by Universitat Politecnica de Valencia contract no. UPV-SUB.2-1302 and FONDO SUPERA COVID-19 by CRUE-Santander Bank grant "Severity Subgroup Discovery and Classification on COVID-19 Real World Data ...[+]
|
|
Tipo: |
|