- -

Two-Scale Model Predictive Control for Resource Optimization Problems With Switched Decisions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-Scale Model Predictive Control for Resource Optimization Problems With Switched Decisions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer-Herrero, Pedro es_ES
dc.contributor.author Alfonso-Gil, José Carlos es_ES
dc.contributor.author Martínez-Márquez, Camilo Itzame es_ES
dc.contributor.author Martínez-Navarro, German es_ES
dc.contributor.author Orts-Grau, Salvador es_ES
dc.contributor.author Segui-Chilet, Salvador es_ES
dc.date.accessioned 2022-11-22T19:02:58Z
dc.date.available 2022-11-22T19:02:58Z
dc.date.issued 2022 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190057
dc.description.abstract [EN] Model predictive control (MPC) is widely used in resource optimization problems because it naturally deals with bounded controls and states and allows predictive information to be included. However, at each sampling instant, an optimization problem must be solved. Resource optimization problems with switching control actions naturally lead to optimization problems with integer decision variables, which are computationally costly, particularly when the number of variables is large. As a result, the approach of directly discretizing (DD) the problem to derive a mixed-integer linear program (MILP) sets fundamental limitations on the MPC sampling rate owing to the computational time required to solve the optimization problem. In this paper, we propose a two-scale optimization algorithm (TSOA) for MPC. On the first-scale, the entire prediction horizon is considered and the algorithm provides the optimal resources to be used at each interval with a constant weighting cost. This optimization problem may be cast as a linear program (LP); thus, it is computationally tractable even for a large number of variables and constraints. In the second-scale, the switching nature of the decision variable is recovered by posing an MILP to deploy the optimal resources computed in the previous scale. In this manner, the MILP is solved for a shorter time interval than the entire prediction horizon, thus reducing the number of variables in the optimization problem. The simulation results demonstrate the computational advantages of the proposed algorithm compared to direct problem discretization and optimization. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Energy optimization es_ES
dc.subject Linear programming es_ES
dc.subject Mixed-integer linear programming es_ES
dc.subject Model predictive control es_ES
dc.subject Resource optimization es_ES
dc.subject Switched controls es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Two-Scale Model Predictive Control for Resource Optimization Problems With Switched Decisions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2022.3178846 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Balaguer-Herrero, P.; Alfonso-Gil, JC.; Martínez-Márquez, CI.; Martínez-Navarro, G.; Orts-Grau, S.; Segui-Chilet, S. (2022). Two-Scale Model Predictive Control for Resource Optimization Problems With Switched Decisions. IEEE Access. 10:57824-57834. https://doi.org/10.1109/ACCESS.2022.3178846 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2022.3178846 es_ES
dc.description.upvformatpinicio 57824 es_ES
dc.description.upvformatpfin 57834 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\476931 es_ES
upv.costeAPC 2130 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem