- -

Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices

Mostrar el registro completo del ítem

Blasco, X.; Reynoso-Meza, G.; Sánchez Pérez, EA.; Sánchez Pérez, JV. (2019). Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Applicandae Mathematicae. 159(1):75-93. https://doi.org/10.1007/s10440-018-0184-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190345

Ficheros en el ítem

Metadatos del ítem

Título: Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices
Autor: Blasco, Xavier Reynoso-Meza, G. Sánchez Pérez, Enrique Alfonso Sánchez Pérez, Juan Vicente
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica
Fecha difusión:
Resumen:
[EN] Given a finite dimensional asymmetric normed lattice, we provide explicit formulae for the optimization of the associated (non-Hausdorff) asymmetric distance among a subset and a point. Our analysis has its roots and ...[+]
Palabras clave: Multi-objective , Optimization , Asymmetric norm , Nearest point
Derechos de uso: Reserva de todos los derechos
Fuente:
Acta Applicandae Mathematicae. (issn: 0167-8019 )
DOI: 10.1007/s10440-018-0184-z
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10440-018-0184-z
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES/
info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/
Agradecimientos:
This work was supported by the Ministerio de Economia y Competitividad (Spain) under grants DPI2015-71443-R and MTM2016-77054-C2-1-P.
Tipo: Artículo

References

Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hung. 82, 315–320 (1999)

Alegre, C., Ferrando, I., García-Raffi, L.M., Sánchez-Pérez, E.A.: Compactness in asymmetric normed spaces. Topol. Appl. 155, 527–539 (2008)

Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. American Mathematical Soc., Providence (2003) [+]
Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hung. 82, 315–320 (1999)

Alegre, C., Ferrando, I., García-Raffi, L.M., Sánchez-Pérez, E.A.: Compactness in asymmetric normed spaces. Topol. Appl. 155, 527–539 (2008)

Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. American Mathematical Soc., Providence (2003)

Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis. Inf. Sci. 340, 228–249 (2016)

Cobzaş, S.: Separation of convex sets and best approximation in spaces with asymmetric norm. Quaest. Math. 27, 275–296 (2004)

Cobzaş, S.: Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstr. Appl. Anal. 2005(3), 259–285 (2005)

Cobzaş, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser, Basel (2013)

Cobzaş, S., Mustăţa, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numér. Théor. Approx. 33, 39–50 (2004)

Conradie, J.J.: Asymmetric norms, cones and partial orders. Topol. Appl. 193, 100–115 (2015)

Conradie, J.J., Mabula, M.D.: Completeness, precompactness and compactness in finite-dimensional asymmetrically normed lattices. Topol. Appl. 160, 2012–2024 (2013)

Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Hoboken (2001)

Ferrer, J., Gregori, V., Alegre, A.: Quasi-uniform structures in linear lattices. Rocky Mt. J. Math. 23, 877–884 (1993)

García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: On Hausdorff asymmetric normed linear spaces. Houst. J. Math. 29, 717–728 (2003)

García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaest. Math. 26, 83–96 (2003)

García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms. J. Anal. Appl. 2, 125–138 (2004)

García-Raffi, L.M.: Compactness and finite dimension in asymmetric normed linear spaces. Topol. Appl. 153, 844–853 (2005)

García-Raffi, L.M., Sánchez-Pérez, E.A.: Asymmetric norms and optimal distance points in linear spaces. Topol. Appl. 155, 1410–1419 (2008)

Jonard-Pérez, N., Sánchez-Pérez, E.A.: Extreme points and geometric aspects of convex compact sets in asymmetric normed spaces. Topol. Appl. 203, 12–21 (2016)

Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1996)

Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. North Holland, Amsterdam (1971)

Martin, J., Mayor, G., Valero, O.: On aggregation of normed structures. Math. Comput. Model. 54, 815–827 (2011)

Massanet, S., Valero, O.: On aggregation of metric structures: the extended quasi-metric case. Int. J. Comput. Intell. Syst. 6, 115–126 (2013)

Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (2012)

Reynoso-Meza, G., Blasco, X., Sanchis, J., Herrero, J.M.: Comparison of design concepts in multi-criteria decision-making using level diagrams. Inf. Sci. 221, 124–141 (2013)

Yu, P.-L.: Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Springer, Berlin (2013)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem