Mostrar el registro sencillo del ítem
dc.contributor.author | Blasco, Xavier | es_ES |
dc.contributor.author | Reynoso-Meza, G. | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | es_ES |
dc.contributor.author | Sánchez Pérez, Juan Vicente | es_ES |
dc.date.accessioned | 2022-11-29T19:02:48Z | |
dc.date.available | 2022-11-29T19:02:48Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.issn | 0167-8019 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190345 | |
dc.description.abstract | [EN] Given a finite dimensional asymmetric normed lattice, we provide explicit formulae for the optimization of the associated (non-Hausdorff) asymmetric distance among a subset and a point. Our analysis has its roots and finds its applications in the current development of effective algorithms for multi-objective optimization programs. We are interested in providing the fundamental theoretical results for the associated convex analysis, fixing in this way the framework for this new optimization tool. The fact that the associated topology is not Hausdorff forces us to define a new setting and to use a new point of view for this analysis. Existence and uniqueness theorems for this optimization are shown. Our main result is the translation of the original abstract optimal distance problem to a clear optimization scheme. Actually, this justifies the algorithms and shows new aspects of the numerical and computational methods that have been already used in visualization of multi-objective optimization problems. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economia y Competitividad (Spain) under grants DPI2015-71443-R and MTM2016-77054-C2-1-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Acta Applicandae Mathematicae | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multi-objective | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Asymmetric norm | es_ES |
dc.subject | Nearest point | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10440-018-0184-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica | es_ES |
dc.description.bibliographicCitation | Blasco, X.; Reynoso-Meza, G.; Sánchez Pérez, EA.; Sánchez Pérez, JV. (2019). Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Applicandae Mathematicae. 159(1):75-93. https://doi.org/10.1007/s10440-018-0184-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10440-018-0184-z | es_ES |
dc.description.upvformatpinicio | 75 | es_ES |
dc.description.upvformatpfin | 93 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 159 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\378478 | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMIA Y EMPRESA | es_ES |
dc.contributor.funder | MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD | es_ES |
dc.description.references | Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hung. 82, 315–320 (1999) | es_ES |
dc.description.references | Alegre, C., Ferrando, I., García-Raffi, L.M., Sánchez-Pérez, E.A.: Compactness in asymmetric normed spaces. Topol. Appl. 155, 527–539 (2008) | es_ES |
dc.description.references | Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. American Mathematical Soc., Providence (2003) | es_ES |
dc.description.references | Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis. Inf. Sci. 340, 228–249 (2016) | es_ES |
dc.description.references | Cobzaş, S.: Separation of convex sets and best approximation in spaces with asymmetric norm. Quaest. Math. 27, 275–296 (2004) | es_ES |
dc.description.references | Cobzaş, S.: Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstr. Appl. Anal. 2005(3), 259–285 (2005) | es_ES |
dc.description.references | Cobzaş, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser, Basel (2013) | es_ES |
dc.description.references | Cobzaş, S., Mustăţa, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numér. Théor. Approx. 33, 39–50 (2004) | es_ES |
dc.description.references | Conradie, J.J.: Asymmetric norms, cones and partial orders. Topol. Appl. 193, 100–115 (2015) | es_ES |
dc.description.references | Conradie, J.J., Mabula, M.D.: Completeness, precompactness and compactness in finite-dimensional asymmetrically normed lattices. Topol. Appl. 160, 2012–2024 (2013) | es_ES |
dc.description.references | Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Hoboken (2001) | es_ES |
dc.description.references | Ferrer, J., Gregori, V., Alegre, A.: Quasi-uniform structures in linear lattices. Rocky Mt. J. Math. 23, 877–884 (1993) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: On Hausdorff asymmetric normed linear spaces. Houst. J. Math. 29, 717–728 (2003) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaest. Math. 26, 83–96 (2003) | es_ES |
dc.description.references | García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms. J. Anal. Appl. 2, 125–138 (2004) | es_ES |
dc.description.references | García-Raffi, L.M.: Compactness and finite dimension in asymmetric normed linear spaces. Topol. Appl. 153, 844–853 (2005) | es_ES |
dc.description.references | García-Raffi, L.M., Sánchez-Pérez, E.A.: Asymmetric norms and optimal distance points in linear spaces. Topol. Appl. 155, 1410–1419 (2008) | es_ES |
dc.description.references | Jonard-Pérez, N., Sánchez-Pérez, E.A.: Extreme points and geometric aspects of convex compact sets in asymmetric normed spaces. Topol. Appl. 203, 12–21 (2016) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1996) | es_ES |
dc.description.references | Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. North Holland, Amsterdam (1971) | es_ES |
dc.description.references | Martin, J., Mayor, G., Valero, O.: On aggregation of normed structures. Math. Comput. Model. 54, 815–827 (2011) | es_ES |
dc.description.references | Massanet, S., Valero, O.: On aggregation of metric structures: the extended quasi-metric case. Int. J. Comput. Intell. Syst. 6, 115–126 (2013) | es_ES |
dc.description.references | Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (2012) | es_ES |
dc.description.references | Reynoso-Meza, G., Blasco, X., Sanchis, J., Herrero, J.M.: Comparison of design concepts in multi-criteria decision-making using level diagrams. Inf. Sci. 221, 124–141 (2013) | es_ES |
dc.description.references | Yu, P.-L.: Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Springer, Berlin (2013) | es_ES |