- -

Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blasco, Xavier es_ES
dc.contributor.author Reynoso-Meza, G. es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.contributor.author Sánchez Pérez, Juan Vicente es_ES
dc.date.accessioned 2022-11-29T19:02:48Z
dc.date.available 2022-11-29T19:02:48Z
dc.date.issued 2019-02 es_ES
dc.identifier.issn 0167-8019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190345
dc.description.abstract [EN] Given a finite dimensional asymmetric normed lattice, we provide explicit formulae for the optimization of the associated (non-Hausdorff) asymmetric distance among a subset and a point. Our analysis has its roots and finds its applications in the current development of effective algorithms for multi-objective optimization programs. We are interested in providing the fundamental theoretical results for the associated convex analysis, fixing in this way the framework for this new optimization tool. The fact that the associated topology is not Hausdorff forces us to define a new setting and to use a new point of view for this analysis. Existence and uniqueness theorems for this optimization are shown. Our main result is the translation of the original abstract optimal distance problem to a clear optimization scheme. Actually, this justifies the algorithms and shows new aspects of the numerical and computational methods that have been already used in visualization of multi-objective optimization problems. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad (Spain) under grants DPI2015-71443-R and MTM2016-77054-C2-1-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Acta Applicandae Mathematicae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multi-objective es_ES
dc.subject Optimization es_ES
dc.subject Asymmetric norm es_ES
dc.subject Nearest point es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10440-018-0184-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD//MTM2016-77054-C2-1-P//ANÁLISIS NO LINEAL, INTEGRACIÓN VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACIÓN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Geodésica, Cartográfica y Topográfica - Escola Tècnica Superior d'Enginyeria Geodèsica, Cartogràfica i Topogràfica es_ES
dc.description.bibliographicCitation Blasco, X.; Reynoso-Meza, G.; Sánchez Pérez, EA.; Sánchez Pérez, JV. (2019). Computing Optimal Distances to Pareto Sets of Multi-Objective Optimization Problems in Asymmetric Normed Lattices. Acta Applicandae Mathematicae. 159(1):75-93. https://doi.org/10.1007/s10440-018-0184-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10440-018-0184-z es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 93 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 159 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\378478 es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA Y EMPRESA es_ES
dc.contributor.funder MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD es_ES
dc.description.references Alegre, C., Ferrer, J., Gregori, V.: On the Hahn-Banach theorem in certain linear quasi-uniform structures. Acta Math. Hung. 82, 315–320 (1999) es_ES
dc.description.references Alegre, C., Ferrando, I., García-Raffi, L.M., Sánchez-Pérez, E.A.: Compactness in asymmetric normed spaces. Topol. Appl. 155, 527–539 (2008) es_ES
dc.description.references Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics. American Mathematical Soc., Providence (2003) es_ES
dc.description.references Blasco, X., Reynoso-Meza, G., Sánchez-Pérez, E.A., Sánchez-Pérez, J.V.: Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis. Inf. Sci. 340, 228–249 (2016) es_ES
dc.description.references Cobzaş, S.: Separation of convex sets and best approximation in spaces with asymmetric norm. Quaest. Math. 27, 275–296 (2004) es_ES
dc.description.references Cobzaş, S.: Geometric properties of Banach spaces and the existence of nearest and farthest points. Abstr. Appl. Anal. 2005(3), 259–285 (2005) es_ES
dc.description.references Cobzaş, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhäuser, Basel (2013) es_ES
dc.description.references Cobzaş, S., Mustăţa, C.: Extension of bounded linear functionals and best approximation in spaces with asymmetric norm. Rev. Anal. Numér. Théor. Approx. 33, 39–50 (2004) es_ES
dc.description.references Conradie, J.J.: Asymmetric norms, cones and partial orders. Topol. Appl. 193, 100–115 (2015) es_ES
dc.description.references Conradie, J.J., Mabula, M.D.: Completeness, precompactness and compactness in finite-dimensional asymmetrically normed lattices. Topol. Appl. 160, 2012–2024 (2013) es_ES
dc.description.references Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Hoboken (2001) es_ES
dc.description.references Ferrer, J., Gregori, V., Alegre, A.: Quasi-uniform structures in linear lattices. Rocky Mt. J. Math. 23, 877–884 (1993) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: On Hausdorff asymmetric normed linear spaces. Houst. J. Math. 29, 717–728 (2003) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez-Pérez, E.A.: The dual space of an asymmetric normed linear space. Quaest. Math. 26, 83–96 (2003) es_ES
dc.description.references García Raffi, L.M., Romaguera, S., Sánchez Pérez, E.A.: Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms. J. Anal. Appl. 2, 125–138 (2004) es_ES
dc.description.references García-Raffi, L.M.: Compactness and finite dimension in asymmetric normed linear spaces. Topol. Appl. 153, 844–853 (2005) es_ES
dc.description.references García-Raffi, L.M., Sánchez-Pérez, E.A.: Asymmetric norms and optimal distance points in linear spaces. Topol. Appl. 155, 1410–1419 (2008) es_ES
dc.description.references Jonard-Pérez, N., Sánchez-Pérez, E.A.: Extreme points and geometric aspects of convex compact sets in asymmetric normed spaces. Topol. Appl. 203, 12–21 (2016) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1996) es_ES
dc.description.references Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. North Holland, Amsterdam (1971) es_ES
dc.description.references Martin, J., Mayor, G., Valero, O.: On aggregation of normed structures. Math. Comput. Model. 54, 815–827 (2011) es_ES
dc.description.references Massanet, S., Valero, O.: On aggregation of metric structures: the extended quasi-metric case. Int. J. Comput. Intell. Syst. 6, 115–126 (2013) es_ES
dc.description.references Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Berlin (2012) es_ES
dc.description.references Reynoso-Meza, G., Blasco, X., Sanchis, J., Herrero, J.M.: Comparison of design concepts in multi-criteria decision-making using level diagrams. Inf. Sci. 221, 124–141 (2013) es_ES
dc.description.references Yu, P.-L.: Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions. Springer, Berlin (2013) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem