- -

Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation

Mostrar el registro completo del ítem

Luján, JM.; Pla Moreno, B.; Bares-Moreno, P.; Aramburu-Orihuela, A. (2021). Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation. SAE International. 1-11. https://doi.org/10.4271/2021-01-0423

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190665

Ficheros en el ítem

Metadatos del ítem

Título: Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation
Autor: Luján, José M. Pla Moreno, Benjamín Bares-Moreno, Pau Aramburu-Orihuela, Alexandra
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] Low pressure exhaust gases recirculation (LP-EGR) is becoming a state-of-the-art technique for Nitrogen oxides (NOx) reduction in compression ignited (CI) engines. However, despite the pollutant reduction benefits, ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
SAE Technical Papers. (issn: 0148-7191 )
DOI: 10.4271/2021-01-0423
Editorial:
SAE International
Versión del editor: https://doi.org/10.4271/2021-01-0423
Título del congreso: SAE World Congress Experience (WCX 2021)
Lugar del congreso: Online
Fecha congreso: Abril 13-15,2021
Tipo: Comunicación en congreso Artículo

References

Gonzalez, M.A.D., and Di Nunno, D. , “Internal Exhaust Gas Recirculation for Efficiency and Emissions in a 4-Cylinder Diesel Engine,” SAE Technical Paper 2016-01-2184, 2016, https://doi.org/10.4271/2016-01-2184.

Khalef, M.S., Soba, A., and Korsgren, J. , “Study of EGR and Turbocharger Combinations and Their Influence on Diesel Engine’s Efficiency and Emissions,” SAE Technical Paper 2016-01-0676, 2016, https://doi.org/10.4271/2016-01-0676.

Schalk, E. et al. , “Limits for NOX Reduction by EGR in a Heavy Duty Diesel Engine at Stationary and Transient Conditions,” in ASME 2012 Intern. Combust. Engine Div. Fall Tech. Conf. ICEF 2012, 2012, 601-607. [+]
Gonzalez, M.A.D., and Di Nunno, D. , “Internal Exhaust Gas Recirculation for Efficiency and Emissions in a 4-Cylinder Diesel Engine,” SAE Technical Paper 2016-01-2184, 2016, https://doi.org/10.4271/2016-01-2184.

Khalef, M.S., Soba, A., and Korsgren, J. , “Study of EGR and Turbocharger Combinations and Their Influence on Diesel Engine’s Efficiency and Emissions,” SAE Technical Paper 2016-01-0676, 2016, https://doi.org/10.4271/2016-01-0676.

Schalk, E. et al. , “Limits for NOX Reduction by EGR in a Heavy Duty Diesel Engine at Stationary and Transient Conditions,” in ASME 2012 Intern. Combust. Engine Div. Fall Tech. Conf. ICEF 2012, 2012, 601-607.

Asad, U., and Zheng, M. , “Exhaust Gas Recirculation for Advanced Diesel Combustion Cycles,” Appl. Energy 123:242-252, 2014.

Vítek, O., MacEk, J., Polášek, M., Schmerbeck, S., and Kammerdiener, T. , “Comparison of Different EGR Solutions,” SAE Technical Paper 2008-01-0206, 2008, https://doi.org/10.4271/2008-01-0206.

Scocozza, G.F., Cavina, N., De Cesare, M., Panciroli, M., and Benedetti, C. , “Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine,” SAE Technical Paper 2020-24-0003, 2020, https://doi.org/10.4271/2020-24-0003.

Luján, J.M., Climent, H., Novella, R., and Rivas-Perea, M.E. , “Influence of a Low Pressure EGR Loop on a Gasoline Turbocharged Direct Injection Engine,” Appl. Therm. Eng. 89:432-443, 2015.

Lee, H., Jo, C., Yoon, S., Yi, S. et al. , “Optimization of Dual Loop EGR of a V6 3.0 Liter Diesel Engine for CO2 Reduction,” SAE Technical Paper 2013-01-0316, 2013, https://doi.org/10.4271/2013-01-0316.

Zamboni, G., Moggia, S., and Capobianco, M. , “Effects of a Dual-loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine,” Energies 10(1), 2017.

Mao, B., Yao, M., Zheng, Z., and Liu, H. , “Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine,” SAE Technical Paper 2016-01-2340, 2016, https://doi.org/10.4271/2016-01-2340.

Yan, F., and Wang, J. , “Design and Robustness Analysis of Discrete Observers for Diesel Engine In-Cylinder Oxygen Mass Fraction Cycle-by-Cycle Estimation,” IEEE Trans. Control Syst. Technol. 20(1):72-83, 2012.

Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., and Piscaglia, F. , “1D Simulation of a Turbocharged Diesel Engine with Comparison of Short and Long EGR Route Solutions,” Appl. Energy 111:1-15, 2013.

Park, J., Song, S., and Lee, K.S. , “Numerical Investigation of a Dual-Loop EGR Split Strategy Using a Split Index and Multi-Objective Pareto optimization,” Appl. Energy 142:21-32, 2015.

Liu, F., Pfeiffer, J.M., Caudle, R., Marshall, P., and Olin, P. , “Low Pressure Cooled EGR Transient Estimation and Measurement for an Turbocharged SI Engine,” SAE Technical Paper 2016-01-0618, 2016, https://doi.org/10.4271/2016-01-0618.

Hegarty, K., Dickinson, P., Cieslar, D., and Collings, N. , “Fast O2 Measurement Using Modified UEGO Sensors in the Intake and Exhaust of a Diesel Engine,” SAE Technical Paper 2013-01-1051, 2013, https://doi.org/10.4271/2013-01-1051.

Hamze, S.M., Georges, D., Witrant, E., and Bresch-Pietri, D. , “Optimal Control of Mass Transport Time-Delay Model in an EGR,” SAE Technical Paper 2020-01-0251, 2020, https://doi.org/10.4271/2020-01-0251.

Bresch-Pietri, D., Leroy, T., Chauvin, J., and Petit, N. , “Practical Delay Modeling of Externally Recirculated Burned Gas Fraction for Spark-ignited Engines,” in IFAC Proc., Vol. 46, 3, 232-237, 2013.

Wahlström, J., and Eriksson, L. , “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-linear System Dynamics,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 225(7):960-986, 2011.

Meng, L., Luo, J., Yang, X., and Zeng, C. , “Intake Air Mass Observer Design Based on Extended Kalman Filter for Air-Fuel Ratio Control on SI Engine,” Energies 12(18), 2019.

Min, K., Shin, J., Jung, D., Han, M., and Sunwoo, M. , “Estimation of Intake Oxygen Concentration Using a Dynamic Correction State with Extended Kalman Filter for Light-Duty Diesel Engines,” 140(1), 2018.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem