- -

Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luján, José M. es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Bares-Moreno, Pau es_ES
dc.contributor.author Aramburu-Orihuela, Alexandra es_ES
dc.date.accessioned 2022-12-14T11:46:56Z
dc.date.available 2022-12-14T11:46:56Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190665
dc.description.abstract [EN] Low pressure exhaust gases recirculation (LP-EGR) is becoming a state-of-the-art technique for Nitrogen oxides (NOx) reduction in compression ignited (CI) engines. However, despite the pollutant reduction benefits, LP-EGR suffers from strong non-linearities and delays which are difficult to handle, resulting in reduced engine performance under certain conditions. Measurement and observation of oxygen concentration at the intake have been a research topic over the past few years, and it may be critical for transition phases (from low pressure to high pressure EGR). Here, an adequate selection of models and sensors is essential to obtain a precise and fast measurement for control purposes. The present paper analyses different sensor configurations, with oxygen concentration measurements at the intake and exhaust manifold and combines observation techniques with sensor models to determine the potential of each configuration. Experimental results from a 2.2 l. diesel engine are used to validate the presented techniques. es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0423 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Luján, JM.; Pla Moreno, B.; Bares-Moreno, P.; Aramburu-Orihuela, A. (2021). Optimal Sensor Placement for High Pressure and Low Pressure EGR Estimation. SAE International. 1-11. https://doi.org/10.4271/2021-01-0423 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0423 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\435381 es_ES
dc.description.references Gonzalez, M.A.D., and Di Nunno, D. , “Internal Exhaust Gas Recirculation for Efficiency and Emissions in a 4-Cylinder Diesel Engine,” SAE Technical Paper 2016-01-2184, 2016, https://doi.org/10.4271/2016-01-2184. es_ES
dc.description.references Khalef, M.S., Soba, A., and Korsgren, J. , “Study of EGR and Turbocharger Combinations and Their Influence on Diesel Engine’s Efficiency and Emissions,” SAE Technical Paper 2016-01-0676, 2016, https://doi.org/10.4271/2016-01-0676. es_ES
dc.description.references Schalk, E. et al. , “Limits for NOX Reduction by EGR in a Heavy Duty Diesel Engine at Stationary and Transient Conditions,” in ASME 2012 Intern. Combust. Engine Div. Fall Tech. Conf. ICEF 2012, 2012, 601-607. es_ES
dc.description.references Asad, U., and Zheng, M. , “Exhaust Gas Recirculation for Advanced Diesel Combustion Cycles,” Appl. Energy 123:242-252, 2014. es_ES
dc.description.references Vítek, O., MacEk, J., Polášek, M., Schmerbeck, S., and Kammerdiener, T. , “Comparison of Different EGR Solutions,” SAE Technical Paper 2008-01-0206, 2008, https://doi.org/10.4271/2008-01-0206. es_ES
dc.description.references Scocozza, G.F., Cavina, N., De Cesare, M., Panciroli, M., and Benedetti, C. , “Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine,” SAE Technical Paper 2020-24-0003, 2020, https://doi.org/10.4271/2020-24-0003. es_ES
dc.description.references Luján, J.M., Climent, H., Novella, R., and Rivas-Perea, M.E. , “Influence of a Low Pressure EGR Loop on a Gasoline Turbocharged Direct Injection Engine,” Appl. Therm. Eng. 89:432-443, 2015. es_ES
dc.description.references Lee, H., Jo, C., Yoon, S., Yi, S. et al. , “Optimization of Dual Loop EGR of a V6 3.0 Liter Diesel Engine for CO2 Reduction,” SAE Technical Paper 2013-01-0316, 2013, https://doi.org/10.4271/2013-01-0316. es_ES
dc.description.references Zamboni, G., Moggia, S., and Capobianco, M. , “Effects of a Dual-loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine,” Energies 10(1), 2017. es_ES
dc.description.references Mao, B., Yao, M., Zheng, Z., and Liu, H. , “Effects of Dual Loop EGR and Variable Geometry Turbocharger on Performance and Emissions of a Diesel Engine,” SAE Technical Paper 2016-01-2340, 2016, https://doi.org/10.4271/2016-01-2340. es_ES
dc.description.references Yan, F., and Wang, J. , “Design and Robustness Analysis of Discrete Observers for Diesel Engine In-Cylinder Oxygen Mass Fraction Cycle-by-Cycle Estimation,” IEEE Trans. Control Syst. Technol. 20(1):72-83, 2012. es_ES
dc.description.references Cornolti, L., Onorati, A., Cerri, T., Montenegro, G., and Piscaglia, F. , “1D Simulation of a Turbocharged Diesel Engine with Comparison of Short and Long EGR Route Solutions,” Appl. Energy 111:1-15, 2013. es_ES
dc.description.references Park, J., Song, S., and Lee, K.S. , “Numerical Investigation of a Dual-Loop EGR Split Strategy Using a Split Index and Multi-Objective Pareto optimization,” Appl. Energy 142:21-32, 2015. es_ES
dc.description.references Liu, F., Pfeiffer, J.M., Caudle, R., Marshall, P., and Olin, P. , “Low Pressure Cooled EGR Transient Estimation and Measurement for an Turbocharged SI Engine,” SAE Technical Paper 2016-01-0618, 2016, https://doi.org/10.4271/2016-01-0618. es_ES
dc.description.references Hegarty, K., Dickinson, P., Cieslar, D., and Collings, N. , “Fast O2 Measurement Using Modified UEGO Sensors in the Intake and Exhaust of a Diesel Engine,” SAE Technical Paper 2013-01-1051, 2013, https://doi.org/10.4271/2013-01-1051. es_ES
dc.description.references Hamze, S.M., Georges, D., Witrant, E., and Bresch-Pietri, D. , “Optimal Control of Mass Transport Time-Delay Model in an EGR,” SAE Technical Paper 2020-01-0251, 2020, https://doi.org/10.4271/2020-01-0251. es_ES
dc.description.references Bresch-Pietri, D., Leroy, T., Chauvin, J., and Petit, N. , “Practical Delay Modeling of Externally Recirculated Burned Gas Fraction for Spark-ignited Engines,” in IFAC Proc., Vol. 46, 3, 232-237, 2013. es_ES
dc.description.references Wahlström, J., and Eriksson, L. , “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-linear System Dynamics,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 225(7):960-986, 2011. es_ES
dc.description.references Meng, L., Luo, J., Yang, X., and Zeng, C. , “Intake Air Mass Observer Design Based on Extended Kalman Filter for Air-Fuel Ratio Control on SI Engine,” Energies 12(18), 2019. es_ES
dc.description.references Min, K., Shin, J., Jung, D., Han, M., and Sunwoo, M. , “Estimation of Intake Oxygen Concentration Using a Dynamic Correction State with Extended Kalman Filter for Light-Duty Diesel Engines,” 140(1), 2018. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem