Mostrar el registro sencillo del ítem
dc.contributor.author | Basile, Angelo | es_ES |
dc.contributor.author | Chinea-Ríos, Mara | es_ES |
dc.contributor.author | Uban, Ana-Sabina | es_ES |
dc.contributor.author | Müller, Thomas | es_ES |
dc.contributor.author | Rössler, Luise | es_ES |
dc.contributor.author | Yenikent, Seren | es_ES |
dc.contributor.author | Chulvi-Ferriols, María Alberta | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.contributor.author | Franco-Salvador, Marc | es_ES |
dc.date.accessioned | 2022-12-14T11:47:00Z | |
dc.date.available | 2022-12-14T11:47:00Z | |
dc.date.issued | 2021-09-24 | es_ES |
dc.identifier.issn | 1613-0073 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190670 | |
dc.description.abstract | [EN] This paper presents the contributions of the UPV-Symanto team, a collaboration between Symanto Research and the PRHLT Center, in the eRisk 2021 shared tasks on gambling addiction, self-harm detection and prediction of depression levels. We have used a variety of models and techniques, including Transformers, hierarchical attention networks with multiple linguistic features, a dedicated early alert decision mechanism, and temporal modelling of emotions. We trained the models using additional training data that we collected and annotated thanks to expert psychologists. Our emotions-over-time model obtained the best results for the depression severity task in terms of ACR (and second best according to ADODL). For the self-harm detection task, our Transformer-based model obtained the best absolute result in terms of ERDE5 and we ranked equal first in terms of speed and latency. | es_ES |
dc.description.sponsorship | The authors from Universitat Politècnica de València thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana. We would like to thank the two anonymous reviewers who helped us improve this paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | CEUR | es_ES |
dc.relation.ispartof | Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Risk detection | es_ES |
dc.subject | Depression | es_ES |
dc.subject | Self-harm | es_ES |
dc.subject | Pathological gambling | es_ES |
dc.subject | Social media | es_ES |
dc.subject | Hierarchical networks | es_ES |
dc.subject | Transformer | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement///PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Basile, A.; Chinea-Ríos, M.; Uban, A.; Müller, T.; Rössler, L.; Yenikent, S.; Chulvi-Ferriols, MA.... (2021). UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet. CEUR. 908-927. http://hdl.handle.net/10251/190670 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes | es_ES |
dc.relation.conferencedate | Septiembre 21-24,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://ceur-ws.org/Vol-2936/ | es_ES |
dc.description.upvformatpinicio | 908 | es_ES |
dc.description.upvformatpfin | 927 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\463462 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |