- -

UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Basile, Angelo es_ES
dc.contributor.author Chinea-Ríos, Mara es_ES
dc.contributor.author Uban, Ana-Sabina es_ES
dc.contributor.author Müller, Thomas es_ES
dc.contributor.author Rössler, Luise es_ES
dc.contributor.author Yenikent, Seren es_ES
dc.contributor.author Chulvi-Ferriols, María Alberta es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Franco-Salvador, Marc es_ES
dc.date.accessioned 2022-12-14T11:47:00Z
dc.date.available 2022-12-14T11:47:00Z
dc.date.issued 2021-09-24 es_ES
dc.identifier.issn 1613-0073 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190670
dc.description.abstract [EN] This paper presents the contributions of the UPV-Symanto team, a collaboration between Symanto Research and the PRHLT Center, in the eRisk 2021 shared tasks on gambling addiction, self-harm detection and prediction of depression levels. We have used a variety of models and techniques, including Transformers, hierarchical attention networks with multiple linguistic features, a dedicated early alert decision mechanism, and temporal modelling of emotions. We trained the models using additional training data that we collected and annotated thanks to expert psychologists. Our emotions-over-time model obtained the best results for the depression severity task in terms of ACR (and second best according to ADODL). For the self-harm detection task, our Transformer-based model obtained the best absolute result in terms of ERDE5 and we ranked equal first in terms of speed and latency. es_ES
dc.description.sponsorship The authors from Universitat Politècnica de València thank the EU-FEDER Comunitat Valenciana 2014-2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana. We would like to thank the two anonymous reviewers who helped us improve this paper. es_ES
dc.language Inglés es_ES
dc.publisher CEUR es_ES
dc.relation.ispartof Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021 es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Risk detection es_ES
dc.subject Depression es_ES
dc.subject Self-harm es_ES
dc.subject Pathological gambling es_ES
dc.subject Social media es_ES
dc.subject Hierarchical networks es_ES
dc.subject Transformer es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.relation.projectID info:eu-repo/grantAgreement///PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Basile, A.; Chinea-Ríos, M.; Uban, A.; Müller, T.; Rössler, L.; Yenikent, S.; Chulvi-Ferriols, MA.... (2021). UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet. CEUR. 908-927. http://hdl.handle.net/10251/190670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes es_ES
dc.relation.conferencedate Septiembre 21-24,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://ceur-ws.org/Vol-2936/ es_ES
dc.description.upvformatpinicio 908 es_ES
dc.description.upvformatpfin 927 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\463462 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem