Basile, A.; Chinea-Ríos, M.; Uban, A.; Müller, T.; Rössler, L.; Yenikent, S.; Chulvi-Ferriols, MA.... (2021). UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet. CEUR. 908-927. http://hdl.handle.net/10251/190670
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190670
Título:
|
UPV-Symanto at eRisk 2021: Mental Health Author Profiling for Early Risk Prediction on the Internet
|
Autor:
|
Basile, Angelo
Chinea-Ríos, Mara
Uban, Ana-Sabina
Müller, Thomas
Rössler, Luise
Yenikent, Seren
Chulvi-Ferriols, María Alberta
Rosso, Paolo
Franco-Salvador, Marc
|
Entidad UPV:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
|
Fecha difusión:
|
|
Resumen:
|
[EN] This paper presents the contributions of the UPV-Symanto team, a collaboration between Symanto Research and the PRHLT Center, in the eRisk 2021 shared tasks on gambling addiction, self-harm detection and prediction ...[+]
[EN] This paper presents the contributions of the UPV-Symanto team, a collaboration between Symanto Research and the PRHLT Center, in the eRisk 2021 shared tasks on gambling addiction, self-harm detection and prediction of depression levels. We have used a variety of models and techniques, including
Transformers, hierarchical attention networks with multiple linguistic features, a dedicated early alert decision mechanism, and temporal modelling of emotions. We trained the models using additional training data that we collected and annotated thanks to expert psychologists. Our emotions-over-time model obtained the best results for the depression severity task in terms of ACR (and second best according to ADODL). For the self-harm detection task, our Transformer-based model obtained the best absolute result in terms of ERDE5 and we ranked equal first in terms of speed and latency.
[-]
|
Palabras clave:
|
Risk detection
,
Depression
,
Self-harm
,
Pathological gambling
,
Social media
,
Hierarchical networks
,
Transformer
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
Proceedings of the Working Notes of CLEF 2021, Conference and Labs of the Evaluation Forum, Bucharest, Romania, September 21st to 24th, 2021. (issn:
1613-0073
)
|
Editorial:
|
CEUR
|
Versión del editor:
|
https://ceur-ws.org/Vol-2936/
|
Título del congreso:
|
12th Conference and Labs of the Evaluation Forum (CLEF 2021). Working Notes
|
Lugar del congreso:
|
Online
|
Fecha congreso:
|
Septiembre 21-24,2021
|
Código del Proyecto:
|
info:eu-repo/grantAgreement///PROMETEO%2F2019%2F121//DEEP LEARNING FOR ADAPTATIVE AND MULTIMODAL INTERACTION IN PATTERN RECOGNITION/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F025//SISTEMAS DE FABRICACIÓN INTELIGENTES PARA LA INDUSTRIA 4.0/
|
Agradecimientos:
|
The authors from Universitat Politècnica de València thank the EU-FEDER Comunitat Valenciana
2014-2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the
research project PROMETEO/2019/121 ...[+]
The authors from Universitat Politècnica de València thank the EU-FEDER Comunitat Valenciana
2014-2020 grant IDIFEDER/2018/025. The work of Paolo Rosso was in the framework of the
research project PROMETEO/2019/121 (DeepPattern) by the Generalitat Valenciana. We would
like to thank the two anonymous reviewers who helped us improve this paper.
[-]
|
Tipo:
|
Comunicación en congreso
Artículo
|