- -

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

Mostrar el registro completo del ítem

Payri, R.; Bracho Leon, G.; Marti-Aldaravi, P.; Marco-Gimeno, J. (2021). Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray. SAE International. 1-12. https://doi.org/10.4271/2021-01-0548

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190754

Ficheros en el ítem

Metadatos del ítem

Título: Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray
Autor: Payri, Raul Bracho Leon, Gabriela Marti-Aldaravi, Pedro Marco-Gimeno, Javier
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
[EN] Selective Catalytic Reduction stands for an effective methodology for the reduction of NOx emissions from Diesel engines and meeting current and future EURO standards. For it, the injection of Urea Water Solution (UWS) ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
SAE Technical Papers. (issn: 0148-7191 )
DOI: 10.4271/2021-01-0548
Editorial:
SAE International
Versión del editor: https://doi.org/10.4271/2021-01-0548
Título del congreso: SAE World Congress Experience (WCX 2021)
Lugar del congreso: Online
Fecha congreso: Abril 13-15,2021
Código del Proyecto:
info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F037//EQUIPAMIENTO DE DIAGNOSTICO OPTICO DE ALTA VELOCIDAD PARA ESTUDIAR PROCESOS DE INYECCION/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/
info:eu-repo/grantAgreement///ACIF%2F2020%2F259//AYUDA PREDOCTORAL GVA-MARCO GIMENO. PROYECTO: ESTUDIO COMPUTACIONAL DE LA FORMACION Y EL DESARROLLO DE CHORROS LIQUIDOS EN CONDICIONES DE BAJA PRESION/
Agradecimientos:
The presented work is funded by a grant of Generalitat Valenciana, with reference ACIF/2020/259 and of the European Union. Partial funding comes as well from Spanish Ministerio de Ciencia, Innovación y Universidades ...[+]
Tipo: Comunicación en congreso Artículo

References

Reitz, R.D. et al. , “IJER Editorial: The Future of the Internal Combustion Engine,” Int. J. Engine Res. 21(1):146808741987799, 2019, doi:10.1177/1468087419877990.

van Helden, R., Verbeek, R., Willems, F., and van der Welle, R. , “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” Mar. 2004, https://doi.org/10.4271/2004-01-0154.

Zheng, G., Fila, A., Kotrba, A., and Floyd, R. , “Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks,” Oct. 2010, https://doi.org/10.4271/2010-01-1941. [+]
Reitz, R.D. et al. , “IJER Editorial: The Future of the Internal Combustion Engine,” Int. J. Engine Res. 21(1):146808741987799, 2019, doi:10.1177/1468087419877990.

van Helden, R., Verbeek, R., Willems, F., and van der Welle, R. , “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” Mar. 2004, https://doi.org/10.4271/2004-01-0154.

Zheng, G., Fila, A., Kotrba, A., and Floyd, R. , “Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks,” Oct. 2010, https://doi.org/10.4271/2010-01-1941.

Yim, S.D. et al. , “Decomposition of Urea into NH3 for the SCR Process,” Ind. Eng. Chem. Res. 43(16):4856-4863, 2004, doi:10.1021/ie034052j.

Hartley, R., Henry, C., Eakle, S., and Tonzetich, Z. , “Deposit Reduction in SCR Aftertreatment Systems by Addition of Ti-Based Coordination Complex to UWS,” 2019, https://doi.org/10.4271/2019-01-0313.

Han, J., Lee, J., Oh, Y., Cho, G., and Kim, H. , “Effect of UWS Injection at Low Exhaust Gas Temperature on NOx Removal Efficiency of Diesel Engine,” Int. J. Automot. Technol. 18(6):951-957, 2017, doi:10.1007/s12239-017-0093-6.

Bode, M., Diewald, F., Broll, D.O., Heyse, J.F., Le Chenadec, V., and Pitsch, H. , “Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems,” 2014, https://doi.org/10.4271/2014-1-1427.

Payri, R., Viera, J.P., Gopalakrishnan, V., and Szymkowicz, P.G. , “The Effect of Nozzle Geometry Over Internal Flow and Spray Formation for Three Different Fuels,” Fuel 183:20-33, 2016, https://doi.org/10.1016/j.fuel.2016.06.041.

Payri, R., Viera, J.P., Gopalakrishnan, V., and Szymkowicz, P.G. , “The Effect of Nozzle Geometry Over the Evaporative Spray Formation for Three Different Fuels,” Fuel 188:645-660, 2017, doi:10.1016/j.fuel.2016.06.041.

Kapusta, Ł.J., Sutkowski, M., Zommara, M.R.R., and Teodorczyk, A. , “Characteristics of Water and Urea-Water Solution Sprays,” Catalysts 9(750):750, 2019, doi:10.3390/catal9090750.

Ishimoto, J., Sato, F., and Sato, G. , “Computational Prediction of the Effect of Microcavitation on an Atomization Mechanism in a Gasoline Injector Nozzle,” J. Eng. Gas Turbines Power 132(8), Aug. 2010, doi:10.1115/1.4000264.

Ling, Y., Zaleski, S., and Scardovelli, R. , “Multiscale Simulation of Atomization with Small Droplets Represented by a Lagrangian Point-Particle Model,” Int. J. Multiph. Flow 76:122-143, 2015, https://doi.org/10.1016/j.ijmultiphaseflow.2015.07.002.

Edelbauer, W., Kolar, P., Schellander, D., Pavlovic, Z., and Almbauer, R. , “Numerical Simulation of Spray Break-Up from Cavitating Nozzle Flow by Combined Eulerian-Eulerian and Volume-of-Fluid Methods,” Int. J. Comput. Methods Exp. Meas. 6(2):314-325, 2018, doi:10.2495/CMEM-V6-N2-314-325.

Naik, A., Höltermann, M., Lauer, E., Blodig, S., and Dinkelacker, F. , “Modeling of Air-Assisted Spray Breakup of Urea-Water Solution Using a Volume-of-Fluid Method,” At. Sprays 29(6):553-576, 2019, doi:10.1615/AtomizSpr.2019030987.

Slaney, A.C.K.M. , Principles of Computerized Tomographic Imaging (New York, NY: IEEE Press, 1988).

Duke, D.J. et al. , “High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector,” SAE Int. J. Fuels Lubr. 10(2):328-343, 2017, doi:10.4271/2017-01-0824.

B. T. M , Computed Tomography (Heidelberg, Germany: Springer Science & Business Media, 2008).

Payri, R., Bracho, G., Martí-Aldaraví, P., and Marco-Gimeno, J. , “Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions,” Ind. Eng. Chem. Res. 59(41):18659-18673, Oct. 2020, doi:10.1021/acs.iecr.0c02494.

Convergent Science , editor, CONVERGE 2.4 Manual (Middleton, 2017).

Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. , “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A Fluid Dyn. 3(7):1760-1765, Jul. 1991, doi:10.1063/1.857955.

Werner, H. and Wengle, H. , “Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel,” BT - Turbulent Shear Flows 8,1993, 155-168.

Balabel, A. , “Numerical Modeling of Turbulence-Induced Interfacial Instability in Two-Phase Flow with Moving Interface,” Appl. Math. Model. 36(8):3593-3611, 2012, doi:https://doi.org/10.1016/j.apm.2011.11.006.

Kleissl, J., Kumar, V., Meneveau, C., and Parlange, M.B. , “Numerical Study of Dynamic Smagorinsky Models in Large-Eddy Simulation of the Atmospheric Boundary Layer: Validation in Stable and Unstable Conditions,” Water Resour. Res. 42(6), Jun. 2006, doi:10.1029/2005WR004685.

Payri, R., Bracho, G., Gimeno, J., and Moreno, A. , “A Methodology for the Hydraulic Characterization of a Urea-Water Solution Injector by Means of Spray Momentum Measurement,” in 29th European Conference on Liquid Atomization and Spray Systems, September 2019, 2-4.

Mohapatra, C.K. et al., “Collaborative Investigation of the Internal Flow and Near-Nozzle Flow of an Eight-Hole Gasoline Injector (Engine Combustion Network Spray G),” Int. J. Engine Res., 1468087420918449, Jun. 2020, doi:10.1177/1468087420918449.

Pope, S.B. , “Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows,” New J. Phys. 6:35, 2004, doi:10.1088/1367-2630/6/1/035.

Patankar, V.S.V. , “Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Washington - New York - London. McGraw Hill Book Company, New York 1980, 1. Aufl., 197 S., 76 Abb., geb., DM 71,90,” Chemie Ing. Tech., 53, 3, p. 225, 1981, https://doi.org/10.1002/cite.330530323.

Lefebvre, A.H., and McDonell, V.G. , Atomization and Sprays Second Edition (Boca Raton, FL: CRC Press, 2017).

Lin, S.P., and Reitz, R.D. , “Drop and Spray Formation from a Liquid Jet,” Annu. Rev. Fluid Mech. 30(1):85-105, Jan. 1998, doi:10.1146/annurev.fluid.30.1.85.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem