- -

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author Bracho Leon, Gabriela es_ES
dc.contributor.author Marti-Aldaravi, Pedro es_ES
dc.contributor.author Marco-Gimeno, Javier es_ES
dc.date.accessioned 2022-12-16T08:09:09Z
dc.date.available 2022-12-16T08:09:09Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190754
dc.description.abstract [EN] Selective Catalytic Reduction stands for an effective methodology for the reduction of NOx emissions from Diesel engines and meeting current and future EURO standards. For it, the injection of Urea Water Solution (UWS) plays a major role in the process of reducing the NOx emissions. A LES approach for turbulence modelling allows to have a description of the physics which is a very useful tool in situations where experiments cannot be performed. The main objective of this study is to predict characteristics of the flow of interest inside the injector as well as spray morphology in the near field of the spray. For it, the nozzle geometry has been reconstructed from X-Ray tomography data, and an Eulerian-Eulerian approach commonly known as Mixture Model has been applied to study the liquid phase of the UWS with a LES approach for turbulence modeling. The injector unit is subjected to typical low-pressure working conditions. The results extracted from it comprise parameters that characterize the hydraulic behavior as well as jet intact length. The conclusions drawn from the model depict differences in the flow behavior between the injector three orifices, with an under-prediction of nozzle and spray characteristics of LES formulation with respect to traditional RANS turbulence treatment. es_ES
dc.description.sponsorship The presented work is funded by a grant of Generalitat Valenciana, with reference ACIF/2020/259 and of the European Union. Partial funding comes as well from Spanish Ministerio de Ciencia, Innovación y Universidades through project RTI2018-099706-B-100. Additionally, the experimental hard-ware was purchased through FEDER and Generalitat Valenciana under project IDIFEDER/2018/037. es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0548 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EDUC.INVEST.CULT.DEP//IDIFEDER%2F2018%2F037//EQUIPAMIENTO DE DIAGNOSTICO OPTICO DE ALTA VELOCIDAD PARA ESTUDIAR PROCESOS DE INYECCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099706-B-I00/ES/ESTUDIO DE LA ATOMIZACION PRIMARIA MEDIANTE SIMULACIONES DNS Y TECNICAS OPTICAS DE MUY ALTA RESOLUCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement///ACIF%2F2020%2F259//AYUDA PREDOCTORAL GVA-MARCO GIMENO. PROYECTO: ESTUDIO COMPUTACIONAL DE LA FORMACION Y EL DESARROLLO DE CHORROS LIQUIDOS EN CONDICIONES DE BAJA PRESION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Payri, R.; Bracho Leon, G.; Marti-Aldaravi, P.; Marco-Gimeno, J. (2021). Mixture Model Approach for the Study of the Inner Flow Dynamics of an AdBlue Dosing System and the Characterization of the Near-Field Spray. SAE International. 1-12. https://doi.org/10.4271/2021-01-0548 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0548 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\435282 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Reitz, R.D. et al. , “IJER Editorial: The Future of the Internal Combustion Engine,” Int. J. Engine Res. 21(1):146808741987799, 2019, doi:10.1177/1468087419877990. es_ES
dc.description.references van Helden, R., Verbeek, R., Willems, F., and van der Welle, R. , “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” Mar. 2004, https://doi.org/10.4271/2004-01-0154. es_ES
dc.description.references Zheng, G., Fila, A., Kotrba, A., and Floyd, R. , “Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks,” Oct. 2010, https://doi.org/10.4271/2010-01-1941. es_ES
dc.description.references Yim, S.D. et al. , “Decomposition of Urea into NH3 for the SCR Process,” Ind. Eng. Chem. Res. 43(16):4856-4863, 2004, doi:10.1021/ie034052j. es_ES
dc.description.references Hartley, R., Henry, C., Eakle, S., and Tonzetich, Z. , “Deposit Reduction in SCR Aftertreatment Systems by Addition of Ti-Based Coordination Complex to UWS,” 2019, https://doi.org/10.4271/2019-01-0313. es_ES
dc.description.references Han, J., Lee, J., Oh, Y., Cho, G., and Kim, H. , “Effect of UWS Injection at Low Exhaust Gas Temperature on NOx Removal Efficiency of Diesel Engine,” Int. J. Automot. Technol. 18(6):951-957, 2017, doi:10.1007/s12239-017-0093-6. es_ES
dc.description.references Bode, M., Diewald, F., Broll, D.O., Heyse, J.F., Le Chenadec, V., and Pitsch, H. , “Influence of the Injector Geometry on Primary Breakup in Diesel Injector Systems,” 2014, https://doi.org/10.4271/2014-1-1427. es_ES
dc.description.references Payri, R., Viera, J.P., Gopalakrishnan, V., and Szymkowicz, P.G. , “The Effect of Nozzle Geometry Over Internal Flow and Spray Formation for Three Different Fuels,” Fuel 183:20-33, 2016, https://doi.org/10.1016/j.fuel.2016.06.041. es_ES
dc.description.references Payri, R., Viera, J.P., Gopalakrishnan, V., and Szymkowicz, P.G. , “The Effect of Nozzle Geometry Over the Evaporative Spray Formation for Three Different Fuels,” Fuel 188:645-660, 2017, doi:10.1016/j.fuel.2016.06.041. es_ES
dc.description.references Kapusta, Ł.J., Sutkowski, M., Zommara, M.R.R., and Teodorczyk, A. , “Characteristics of Water and Urea-Water Solution Sprays,” Catalysts 9(750):750, 2019, doi:10.3390/catal9090750. es_ES
dc.description.references Ishimoto, J., Sato, F., and Sato, G. , “Computational Prediction of the Effect of Microcavitation on an Atomization Mechanism in a Gasoline Injector Nozzle,” J. Eng. Gas Turbines Power 132(8), Aug. 2010, doi:10.1115/1.4000264. es_ES
dc.description.references Ling, Y., Zaleski, S., and Scardovelli, R. , “Multiscale Simulation of Atomization with Small Droplets Represented by a Lagrangian Point-Particle Model,” Int. J. Multiph. Flow 76:122-143, 2015, https://doi.org/10.1016/j.ijmultiphaseflow.2015.07.002. es_ES
dc.description.references Edelbauer, W., Kolar, P., Schellander, D., Pavlovic, Z., and Almbauer, R. , “Numerical Simulation of Spray Break-Up from Cavitating Nozzle Flow by Combined Eulerian-Eulerian and Volume-of-Fluid Methods,” Int. J. Comput. Methods Exp. Meas. 6(2):314-325, 2018, doi:10.2495/CMEM-V6-N2-314-325. es_ES
dc.description.references Naik, A., Höltermann, M., Lauer, E., Blodig, S., and Dinkelacker, F. , “Modeling of Air-Assisted Spray Breakup of Urea-Water Solution Using a Volume-of-Fluid Method,” At. Sprays 29(6):553-576, 2019, doi:10.1615/AtomizSpr.2019030987. es_ES
dc.description.references Slaney, A.C.K.M. , Principles of Computerized Tomographic Imaging (New York, NY: IEEE Press, 1988). es_ES
dc.description.references Duke, D.J. et al. , “High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector,” SAE Int. J. Fuels Lubr. 10(2):328-343, 2017, doi:10.4271/2017-01-0824. es_ES
dc.description.references B. T. M , Computed Tomography (Heidelberg, Germany: Springer Science & Business Media, 2008). es_ES
dc.description.references Payri, R., Bracho, G., Martí-Aldaraví, P., and Marco-Gimeno, J. , “Computational Study of Urea-Water Solution Sprays for the Analysis of the Injection Process in SCR-like Conditions,” Ind. Eng. Chem. Res. 59(41):18659-18673, Oct. 2020, doi:10.1021/acs.iecr.0c02494. es_ES
dc.description.references Convergent Science , editor, CONVERGE 2.4 Manual (Middleton, 2017). es_ES
dc.description.references Germano, M., Piomelli, U., Moin, P., and Cabot, W.H. , “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Phys. Fluids A Fluid Dyn. 3(7):1760-1765, Jul. 1991, doi:10.1063/1.857955. es_ES
dc.description.references Werner, H. and Wengle, H. , “Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel,” BT - Turbulent Shear Flows 8,1993, 155-168. es_ES
dc.description.references Balabel, A. , “Numerical Modeling of Turbulence-Induced Interfacial Instability in Two-Phase Flow with Moving Interface,” Appl. Math. Model. 36(8):3593-3611, 2012, doi:https://doi.org/10.1016/j.apm.2011.11.006. es_ES
dc.description.references Kleissl, J., Kumar, V., Meneveau, C., and Parlange, M.B. , “Numerical Study of Dynamic Smagorinsky Models in Large-Eddy Simulation of the Atmospheric Boundary Layer: Validation in Stable and Unstable Conditions,” Water Resour. Res. 42(6), Jun. 2006, doi:10.1029/2005WR004685. es_ES
dc.description.references Payri, R., Bracho, G., Gimeno, J., and Moreno, A. , “A Methodology for the Hydraulic Characterization of a Urea-Water Solution Injector by Means of Spray Momentum Measurement,” in 29th European Conference on Liquid Atomization and Spray Systems, September 2019, 2-4. es_ES
dc.description.references Mohapatra, C.K. et al., “Collaborative Investigation of the Internal Flow and Near-Nozzle Flow of an Eight-Hole Gasoline Injector (Engine Combustion Network Spray G),” Int. J. Engine Res., 1468087420918449, Jun. 2020, doi:10.1177/1468087420918449. es_ES
dc.description.references Pope, S.B. , “Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows,” New J. Phys. 6:35, 2004, doi:10.1088/1367-2630/6/1/035. es_ES
dc.description.references Patankar, V.S.V. , “Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, Washington - New York - London. McGraw Hill Book Company, New York 1980, 1. Aufl., 197 S., 76 Abb., geb., DM 71,90,” Chemie Ing. Tech., 53, 3, p. 225, 1981, https://doi.org/10.1002/cite.330530323. es_ES
dc.description.references Lefebvre, A.H., and McDonell, V.G. , Atomization and Sprays Second Edition (Boca Raton, FL: CRC Press, 2017). es_ES
dc.description.references Lin, S.P., and Reitz, R.D. , “Drop and Spray Formation from a Liquid Jet,” Annu. Rev. Fluid Mech. 30(1):85-105, Jan. 1998, doi:10.1146/annurev.fluid.30.1.85. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem