Soltani, R., Samadi, H., Garcia, E., and Coyle, T.W. , “Development of Alternative Thermal Barrier Coatings for Diesel Engines,” SAE Technical Paper 2005-01-0650, 2005, doi:10.4271/2005-01-0650.
Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al. , “Concept of ‘Temperature Swing Heat Insulation’ in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat,” SAE Int. J Eng., 2013, doi:10.4271/2013-01-0274.
Kikusato, A., Terahata, K., Jin, K., and Daisho, Y. , “A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine---Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock,” SAE Int. J. Engines, 2014, doi:10.4271/2014-01-1066.
[+]
Soltani, R., Samadi, H., Garcia, E., and Coyle, T.W. , “Development of Alternative Thermal Barrier Coatings for Diesel Engines,” SAE Technical Paper 2005-01-0650, 2005, doi:10.4271/2005-01-0650.
Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al. , “Concept of ‘Temperature Swing Heat Insulation’ in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat,” SAE Int. J Eng., 2013, doi:10.4271/2013-01-0274.
Kikusato, A., Terahata, K., Jin, K., and Daisho, Y. , “A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine---Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock,” SAE Int. J. Engines, 2014, doi:10.4271/2014-01-1066.
Kogo, T., Hamamura, Y., Nakatani, K., Toda, T. et al. , “High Efficiency Diesel Engine with Low Heat Loss Combustion Concept-Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine,” SAE Technical Paper, 2016-01-0658, 2016, doi:10.4271/2016-01-0658.
Andrie, M., Kokjohn, S., Paliwal, S., Kamo, L.S. et al. , “Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines,” SAE Technical Paper, 2019-01-0228, 2019, doi:10.4271/2019-01-0228.
Fukui, K., Wakisaka, Y., Nishikawa, K., Hattori, Y. et al. , “Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept,” SAE Technical Paper, 2016-01-0675, 2016, doi:10.4271/2016-01-0675.
Rakopoulos, C.D., and Mavropoulos, G.C. , “Study of the Steady and Transient Temperature Field and Heat Flow in the Combustion Chamber Components of a Medium Speed Diesel Engine Using Finite Element Analyses,” Int. J. Energy Res. 20(5):437-464, 1996.
Rakopoulos, C.D., and Mavropoulos, G.C. , “Components Heat Transfer Studies in a Low Heat Rejection DI Diesel Engine using a Hybrid Thermostructural Finite Element Model,” App. Therm. Eng. 18(5):301-316, 1998, 1998, doi:10.1016/S1359-4311(97)00055-0.
Fontanesi, S., and Giacopini, M. , “Multiphase CFD-CHT Optimization of the Cooling Jacket and FEM Analysis of the Engine Head of a V6 Diesel Engine,” App. Therm. Eng. 52(2):293-303, 2013, doi:10.1016/j.applthermaleng.2012.12.005.
Kundu, P., Scarcelli, R., Som, S., Ickes, A. et al. , “Modeling Heat Loss Through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations using a Conjugate Heat Transfer Model,” SAE Technical Paper, 2016-01-2235, 2016, doi:10.4271/2016-01-2235.
Leguille, M., Ravet, F. , Le Moine, J., Pomraning, E. et al., “Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine”, SAE Technical Paper, 2017-01-0669, 2017, doi:10.4271/2017-01-0669.
Wu, M., Pei, Y., Qin, J., Li, X. et al. , “Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine,” SAE Technical Paper, 2017-01-0576, 2017, doi:10.4271/2017-01-0576.
Zhang, L. , “Parallel Simulation of Engine In-Cylinder Processes with Conjugate Heat Transfer Modeling,” Appl. Therm. Eng. 142:232-240, 2018, doi:10.1016/j.applthermaleng.2018.06.084.
Hummel, D., Beer, S., and Hornung, A. , “A Conjugate Heat Transfer Model for Unconstrained Melting of Macroencapsulated Phase Change Materials Subjected to External Convection,” Int. J. Heat Mass Transfer 149:119205, 2020, doi:10.1016/j.ijheatmasstransfer.2019.119205.
Monelletta, L. , “Contribution to the Study of Combustion Noise of Automotive Diesel Engines”, Doctoral dissertation, Universitat Politècnica de València, 2010.
De Lima Moradell, D.A. , “Analysis of Combustion Concepts in a Poppet Valve Two-Stroke Downsized Compression Ignition Engine Designed for Passenger Car Applications,” Doctoral dissertation, Universitat Politècnica de València, 2016.
Broatch, A., Margot, X., Garcia-Tiscar, J., and Escalona, J. , “Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine,” SAE Technical Paper, 2019-24-0091, 2019, doi:10.4271/2019-24-0091.
Olmeda, P., Margot, X., Quintero, P., and Escalona, J. , “Numerical Approach to Define a Thermodynamically Equivalent Material for the Conjugate Heat Transfer Simulation of Very Thin Coating Layers,” Int. J. Heat Mass Transfer 162:120377, 2020, doi:10.1016/j.ijheatmasstransfer.2020.120377.
Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “New Approach to Study the Heat Transfer in Internal Combustion Engines by 3D Modelling,” Int. J. Therm. Sci. 138:405-415, 2019, doi:10.1016/j.ijthermalsci.2019.01.006.
Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “Conjugate Heat Transfer Study of the Impact of ‘Thermo-Swing’ Coatings on Internal Combustion Engines Heat Losses,” Int. J. Engine Res., 2020, doi:10.1177/1468087420960617.
Broatch, A., Olmeda, P., Margot, X., and Gomez-Soriano, J. , “A One-Dimensional Modeling Study on the Effect of Advanced Insulation Coatings on Internal Combustion Engine Efficiency,” Int. J. Engine Res.1468087420921584, 2020, doi:10.1177/1468087420921584.
Senecal, P.K., Richards, K., and Pomraning, E. , “CONVERGE 2.4 Manual,” Madison, WI, 2019.
Gómez Soriano, J. , “Computational Assessment of Combustion Noise of Automotive Compression-Ignited Engines”, Doctoral dissertation, Universitat Politècnica de València, 2018.
Versteeg, H.K., and Malalasekera, W. , An Introduction to Computational Fluid Dynamics - The Finite Volume Method 2nd Edition (Pearson Educational Limited, 2007).
Bredberg, J. , “On the Wall Boundary Condition for Turbulence Models”, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, Internal Report 00/4,” Goteborg, 2000.
Habchi, C., Lafossas, F.A., Béard, P., and Broseta, D. , “Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion,” SAE Transactions1421-1431, 2004, doi:10.4271/2004-01-1996.
O'Rourke, P.J., and Amsden, A.A. , “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Transactions2000-2013, 1996, doi:10.4271/961961.
Senecal, P.K., Pomraning, E., Richards, K.J., Briggs, T.E. et al. , “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length using CFD and Parallel Detailed Chemistry,” SAE Transactions1331-1351, 2003, doi:10.4271/2003-01-1043.
Amsden, A.A., and Findley, M. , “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves”, No. LA-13313-MS Lawrence Livermore National Lab.(LLNL) Livermore, CA (United States), 1997.
Broatch, A., Margot, X., Novella, R., and Gómez-Soriano, J. , “Impact of the Injector Design on the Combustion Noise of Gasoline Partially Premixed Combustion in A 2-Stroke Engine,” Appl. Therm. Eng. 119:530-540, 2017, doi:10.1016/j.applthermaleng.2017.03.081.
Gonera, M., and Sandin, O. , “Thermal Analysis of a Diesel Piston and Cylinder Liner Using the Inverse Heat Conduction Method”, Chalmers University of Technology, Goteborg, Sweden, 2015.
Lu, Y., Zhang, X., Xiang, P., and Dong, D. , “Analysis of Thermal Temperature Fields and Thermal Stress under Steady Temperature Field of Diesel Engine Piston,” Appl. Thermal Eng. 113:796-812, 2017, doi:10.1016/j.applthermaleng.2016.11.070.
Paweł, M., and Geca, M. , “FEM Analysis of Piston for Aircraft Two Stroke Diesel Engine,” MATEC Web of Conferences 252:07004, 2019, doi:10.1051/matecconf/201925207004.
Esfahanian, V., Javaheri, A., and Ghaffarpour, M. , “Thermal Analysis of an SI Engine Piston using Different Combustion Boundary Condition Treatments,” Appl. Therm. Eng. 26(2-3):277-287, 2006, doi:10.1016/j.applthermaleng.2005.05.002.
Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.M. et al. , “Modeling Investigation of Thermal Insulation Approaches for Low Heat Rejection Diesel Engines using a Conjugate Heat Transfer Model,” Int. J. Engine Res. 20, 92(1, 1042019), 2019, 2019, doi:10.1177/1468087418818264.
[-]