Mostrar el registro sencillo del ítem
dc.contributor.author | Margot , Xandra | es_ES |
dc.contributor.author | Escalona-Cornejo, Johan Enrique | es_ES |
dc.contributor.author | Bianco, Andrea | es_ES |
dc.date.accessioned | 2022-12-16T08:09:12Z | |
dc.date.available | 2022-12-16T08:09:12Z | |
dc.date.issued | 2021-04-15 | es_ES |
dc.identifier.issn | 0148-7191 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/190757 | |
dc.description.abstract | [EN] In recent years, the automotive industry has been increasingly committed to developing new solutions for better and more efficient engines. One of them is the use of new insulating materials (thermal conductivity < 0.4 W/m-K, heat capacitance < 500 kJ/m3-K) to coat the engine combustion chamber walls, as well as the exhaust manifold. The main idea when coating the combustion chamber with these materials is to obtain a reduction of the temperature difference (thermal swing) between gas and walls during the engine cycle and minimize heat losses. Experimental measurements of the possible performance improvements are very difficult to obtain, mainly because the techniques available to measure wall temperature are limited. Therefore, simulations are typically used to investigate insulated combustion chambers. Nevertheless, the new generation of insulating coatings is posing challenges to numerical modelling, as layer thickness is very small (~100 ¿m). Indeed, a detailed modelling would require additional cells refinement for the coating layer and therefore significant increase in computational effort and simulation time. In this regard, a novel strategy to model thin coating layers in the combustion chamber walls is presented in this paper. The approach consists in the definition of a thicker equivalent coating material that reproduces the thermal behavior of the real thin coating. The calculations are performed using a commercial 3D-CFD software for a Diesel engine considering two configurations: conventional metallic piston and coated piston top. Finally, the results are compared to assess the impact of the new generation of insulating coatings on engine performance. | es_ES |
dc.description.sponsorship | The presented work has been conceived as result of a collaboration project between Powertech Engineering and CMT Motores Térmicos within the framework of the doctoral internship program of Universitat Politècnica de Valéncia. The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD-CHT calculations using CONVERGE software. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAE International | es_ES |
dc.relation.ispartof | SAE Technical Papers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.title | Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4271/2021-01-0413 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.description.bibliographicCitation | Margot, X.; Escalona-Cornejo, JE.; Bianco, A. (2021). Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines. SAE International. 1-14. https://doi.org/10.4271/2021-01-0413 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | SAE World Congress Experience (WCX 2021) | es_ES |
dc.relation.conferencedate | Abril 13-15,2021 | es_ES |
dc.relation.conferenceplace | Online | es_ES |
dc.relation.publisherversion | https://doi.org/10.4271/2021-01-0413 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\434685 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Soltani, R., Samadi, H., Garcia, E., and Coyle, T.W. , “Development of Alternative Thermal Barrier Coatings for Diesel Engines,” SAE Technical Paper 2005-01-0650, 2005, doi:10.4271/2005-01-0650. | es_ES |
dc.description.references | Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al. , “Concept of ‘Temperature Swing Heat Insulation’ in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat,” SAE Int. J Eng., 2013, doi:10.4271/2013-01-0274. | es_ES |
dc.description.references | Kikusato, A., Terahata, K., Jin, K., and Daisho, Y. , “A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine---Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock,” SAE Int. J. Engines, 2014, doi:10.4271/2014-01-1066. | es_ES |
dc.description.references | Kogo, T., Hamamura, Y., Nakatani, K., Toda, T. et al. , “High Efficiency Diesel Engine with Low Heat Loss Combustion Concept-Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine,” SAE Technical Paper, 2016-01-0658, 2016, doi:10.4271/2016-01-0658. | es_ES |
dc.description.references | Andrie, M., Kokjohn, S., Paliwal, S., Kamo, L.S. et al. , “Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines,” SAE Technical Paper, 2019-01-0228, 2019, doi:10.4271/2019-01-0228. | es_ES |
dc.description.references | Fukui, K., Wakisaka, Y., Nishikawa, K., Hattori, Y. et al. , “Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept,” SAE Technical Paper, 2016-01-0675, 2016, doi:10.4271/2016-01-0675. | es_ES |
dc.description.references | Rakopoulos, C.D., and Mavropoulos, G.C. , “Study of the Steady and Transient Temperature Field and Heat Flow in the Combustion Chamber Components of a Medium Speed Diesel Engine Using Finite Element Analyses,” Int. J. Energy Res. 20(5):437-464, 1996. | es_ES |
dc.description.references | Rakopoulos, C.D., and Mavropoulos, G.C. , “Components Heat Transfer Studies in a Low Heat Rejection DI Diesel Engine using a Hybrid Thermostructural Finite Element Model,” App. Therm. Eng. 18(5):301-316, 1998, 1998, doi:10.1016/S1359-4311(97)00055-0. | es_ES |
dc.description.references | Fontanesi, S., and Giacopini, M. , “Multiphase CFD-CHT Optimization of the Cooling Jacket and FEM Analysis of the Engine Head of a V6 Diesel Engine,” App. Therm. Eng. 52(2):293-303, 2013, doi:10.1016/j.applthermaleng.2012.12.005. | es_ES |
dc.description.references | Kundu, P., Scarcelli, R., Som, S., Ickes, A. et al. , “Modeling Heat Loss Through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations using a Conjugate Heat Transfer Model,” SAE Technical Paper, 2016-01-2235, 2016, doi:10.4271/2016-01-2235. | es_ES |
dc.description.references | Leguille, M., Ravet, F. , Le Moine, J., Pomraning, E. et al., “Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine”, SAE Technical Paper, 2017-01-0669, 2017, doi:10.4271/2017-01-0669. | es_ES |
dc.description.references | Wu, M., Pei, Y., Qin, J., Li, X. et al. , “Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine,” SAE Technical Paper, 2017-01-0576, 2017, doi:10.4271/2017-01-0576. | es_ES |
dc.description.references | Zhang, L. , “Parallel Simulation of Engine In-Cylinder Processes with Conjugate Heat Transfer Modeling,” Appl. Therm. Eng. 142:232-240, 2018, doi:10.1016/j.applthermaleng.2018.06.084. | es_ES |
dc.description.references | Hummel, D., Beer, S., and Hornung, A. , “A Conjugate Heat Transfer Model for Unconstrained Melting of Macroencapsulated Phase Change Materials Subjected to External Convection,” Int. J. Heat Mass Transfer 149:119205, 2020, doi:10.1016/j.ijheatmasstransfer.2019.119205. | es_ES |
dc.description.references | Monelletta, L. , “Contribution to the Study of Combustion Noise of Automotive Diesel Engines”, Doctoral dissertation, Universitat Politècnica de València, 2010. | es_ES |
dc.description.references | De Lima Moradell, D.A. , “Analysis of Combustion Concepts in a Poppet Valve Two-Stroke Downsized Compression Ignition Engine Designed for Passenger Car Applications,” Doctoral dissertation, Universitat Politècnica de València, 2016. | es_ES |
dc.description.references | Broatch, A., Margot, X., Garcia-Tiscar, J., and Escalona, J. , “Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine,” SAE Technical Paper, 2019-24-0091, 2019, doi:10.4271/2019-24-0091. | es_ES |
dc.description.references | Olmeda, P., Margot, X., Quintero, P., and Escalona, J. , “Numerical Approach to Define a Thermodynamically Equivalent Material for the Conjugate Heat Transfer Simulation of Very Thin Coating Layers,” Int. J. Heat Mass Transfer 162:120377, 2020, doi:10.1016/j.ijheatmasstransfer.2020.120377. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “New Approach to Study the Heat Transfer in Internal Combustion Engines by 3D Modelling,” Int. J. Therm. Sci. 138:405-415, 2019, doi:10.1016/j.ijthermalsci.2019.01.006. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “Conjugate Heat Transfer Study of the Impact of ‘Thermo-Swing’ Coatings on Internal Combustion Engines Heat Losses,” Int. J. Engine Res., 2020, doi:10.1177/1468087420960617. | es_ES |
dc.description.references | Broatch, A., Olmeda, P., Margot, X., and Gomez-Soriano, J. , “A One-Dimensional Modeling Study on the Effect of Advanced Insulation Coatings on Internal Combustion Engine Efficiency,” Int. J. Engine Res.1468087420921584, 2020, doi:10.1177/1468087420921584. | es_ES |
dc.description.references | Senecal, P.K., Richards, K., and Pomraning, E. , “CONVERGE 2.4 Manual,” Madison, WI, 2019. | es_ES |
dc.description.references | Gómez Soriano, J. , “Computational Assessment of Combustion Noise of Automotive Compression-Ignited Engines”, Doctoral dissertation, Universitat Politècnica de València, 2018. | es_ES |
dc.description.references | Versteeg, H.K., and Malalasekera, W. , An Introduction to Computational Fluid Dynamics - The Finite Volume Method 2nd Edition (Pearson Educational Limited, 2007). | es_ES |
dc.description.references | Bredberg, J. , “On the Wall Boundary Condition for Turbulence Models”, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, Internal Report 00/4,” Goteborg, 2000. | es_ES |
dc.description.references | Habchi, C., Lafossas, F.A., Béard, P., and Broseta, D. , “Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion,” SAE Transactions1421-1431, 2004, doi:10.4271/2004-01-1996. | es_ES |
dc.description.references | O'Rourke, P.J., and Amsden, A.A. , “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Transactions2000-2013, 1996, doi:10.4271/961961. | es_ES |
dc.description.references | Senecal, P.K., Pomraning, E., Richards, K.J., Briggs, T.E. et al. , “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length using CFD and Parallel Detailed Chemistry,” SAE Transactions1331-1351, 2003, doi:10.4271/2003-01-1043. | es_ES |
dc.description.references | Amsden, A.A., and Findley, M. , “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves”, No. LA-13313-MS Lawrence Livermore National Lab.(LLNL) Livermore, CA (United States), 1997. | es_ES |
dc.description.references | Broatch, A., Margot, X., Novella, R., and Gómez-Soriano, J. , “Impact of the Injector Design on the Combustion Noise of Gasoline Partially Premixed Combustion in A 2-Stroke Engine,” Appl. Therm. Eng. 119:530-540, 2017, doi:10.1016/j.applthermaleng.2017.03.081. | es_ES |
dc.description.references | Gonera, M., and Sandin, O. , “Thermal Analysis of a Diesel Piston and Cylinder Liner Using the Inverse Heat Conduction Method”, Chalmers University of Technology, Goteborg, Sweden, 2015. | es_ES |
dc.description.references | Lu, Y., Zhang, X., Xiang, P., and Dong, D. , “Analysis of Thermal Temperature Fields and Thermal Stress under Steady Temperature Field of Diesel Engine Piston,” Appl. Thermal Eng. 113:796-812, 2017, doi:10.1016/j.applthermaleng.2016.11.070. | es_ES |
dc.description.references | Paweł, M., and Geca, M. , “FEM Analysis of Piston for Aircraft Two Stroke Diesel Engine,” MATEC Web of Conferences 252:07004, 2019, doi:10.1051/matecconf/201925207004. | es_ES |
dc.description.references | Esfahanian, V., Javaheri, A., and Ghaffarpour, M. , “Thermal Analysis of an SI Engine Piston using Different Combustion Boundary Condition Treatments,” Appl. Therm. Eng. 26(2-3):277-287, 2006, doi:10.1016/j.applthermaleng.2005.05.002. | es_ES |
dc.description.references | Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.M. et al. , “Modeling Investigation of Thermal Insulation Approaches for Low Heat Rejection Diesel Engines using a Conjugate Heat Transfer Model,” Int. J. Engine Res. 20, 92(1, 1042019), 2019, 2019, doi:10.1177/1468087418818264. | es_ES |