- -

Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Margot , Xandra es_ES
dc.contributor.author Escalona-Cornejo, Johan Enrique es_ES
dc.contributor.author Bianco, Andrea es_ES
dc.date.accessioned 2022-12-16T08:09:12Z
dc.date.available 2022-12-16T08:09:12Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190757
dc.description.abstract [EN] In recent years, the automotive industry has been increasingly committed to developing new solutions for better and more efficient engines. One of them is the use of new insulating materials (thermal conductivity < 0.4 W/m-K, heat capacitance < 500 kJ/m3-K) to coat the engine combustion chamber walls, as well as the exhaust manifold. The main idea when coating the combustion chamber with these materials is to obtain a reduction of the temperature difference (thermal swing) between gas and walls during the engine cycle and minimize heat losses. Experimental measurements of the possible performance improvements are very difficult to obtain, mainly because the techniques available to measure wall temperature are limited. Therefore, simulations are typically used to investigate insulated combustion chambers. Nevertheless, the new generation of insulating coatings is posing challenges to numerical modelling, as layer thickness is very small (~100 ¿m). Indeed, a detailed modelling would require additional cells refinement for the coating layer and therefore significant increase in computational effort and simulation time. In this regard, a novel strategy to model thin coating layers in the combustion chamber walls is presented in this paper. The approach consists in the definition of a thicker equivalent coating material that reproduces the thermal behavior of the real thin coating. The calculations are performed using a commercial 3D-CFD software for a Diesel engine considering two configurations: conventional metallic piston and coated piston top. Finally, the results are compared to assess the impact of the new generation of insulating coatings on engine performance. es_ES
dc.description.sponsorship The presented work has been conceived as result of a collaboration project between Powertech Engineering and CMT Motores Térmicos within the framework of the doctoral internship program of Universitat Politècnica de Valéncia. The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performing the CFD-CHT calculations using CONVERGE software. es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0413 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Margot, X.; Escalona-Cornejo, JE.; Bianco, A. (2021). Development of a Novel Numerical Methodology for the Assessment of Insulating Coating Performance in Internal Combustion Engines. SAE International. 1-14. https://doi.org/10.4271/2021-01-0413 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0413 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\434685 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Soltani, R., Samadi, H., Garcia, E., and Coyle, T.W. , “Development of Alternative Thermal Barrier Coatings for Diesel Engines,” SAE Technical Paper 2005-01-0650, 2005, doi:10.4271/2005-01-0650. es_ES
dc.description.references Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y. et al. , “Concept of ‘Temperature Swing Heat Insulation’ in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat,” SAE Int. J Eng., 2013, doi:10.4271/2013-01-0274. es_ES
dc.description.references Kikusato, A., Terahata, K., Jin, K., and Daisho, Y. , “A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine---Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock,” SAE Int. J. Engines, 2014, doi:10.4271/2014-01-1066. es_ES
dc.description.references Kogo, T., Hamamura, Y., Nakatani, K., Toda, T. et al. , “High Efficiency Diesel Engine with Low Heat Loss Combustion Concept-Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine,” SAE Technical Paper, 2016-01-0658, 2016, doi:10.4271/2016-01-0658. es_ES
dc.description.references Andrie, M., Kokjohn, S., Paliwal, S., Kamo, L.S. et al. , “Low Heat Capacitance Thermal Barrier Coatings for Internal Combustion Engines,” SAE Technical Paper, 2019-01-0228, 2019, doi:10.4271/2019-01-0228. es_ES
dc.description.references Fukui, K., Wakisaka, Y., Nishikawa, K., Hattori, Y. et al. , “Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept,” SAE Technical Paper, 2016-01-0675, 2016, doi:10.4271/2016-01-0675. es_ES
dc.description.references Rakopoulos, C.D., and Mavropoulos, G.C. , “Study of the Steady and Transient Temperature Field and Heat Flow in the Combustion Chamber Components of a Medium Speed Diesel Engine Using Finite Element Analyses,” Int. J. Energy Res. 20(5):437-464, 1996. es_ES
dc.description.references Rakopoulos, C.D., and Mavropoulos, G.C. , “Components Heat Transfer Studies in a Low Heat Rejection DI Diesel Engine using a Hybrid Thermostructural Finite Element Model,” App. Therm. Eng. 18(5):301-316, 1998, 1998, doi:10.1016/S1359-4311(97)00055-0. es_ES
dc.description.references Fontanesi, S., and Giacopini, M. , “Multiphase CFD-CHT Optimization of the Cooling Jacket and FEM Analysis of the Engine Head of a V6 Diesel Engine,” App. Therm. Eng. 52(2):293-303, 2013, doi:10.1016/j.applthermaleng.2012.12.005. es_ES
dc.description.references Kundu, P., Scarcelli, R., Som, S., Ickes, A. et al. , “Modeling Heat Loss Through Pistons and Effect of Thermal Boundary Coatings in Diesel Engine Simulations using a Conjugate Heat Transfer Model,” SAE Technical Paper, 2016-01-2235, 2016, doi:10.4271/2016-01-2235. es_ES
dc.description.references Leguille, M., Ravet, F. , Le Moine, J., Pomraning, E. et al., “Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine”, SAE Technical Paper, 2017-01-0669, 2017, doi:10.4271/2017-01-0669. es_ES
dc.description.references Wu, M., Pei, Y., Qin, J., Li, X. et al. , “Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine,” SAE Technical Paper, 2017-01-0576, 2017, doi:10.4271/2017-01-0576. es_ES
dc.description.references Zhang, L. , “Parallel Simulation of Engine In-Cylinder Processes with Conjugate Heat Transfer Modeling,” Appl. Therm. Eng. 142:232-240, 2018, doi:10.1016/j.applthermaleng.2018.06.084. es_ES
dc.description.references Hummel, D., Beer, S., and Hornung, A. , “A Conjugate Heat Transfer Model for Unconstrained Melting of Macroencapsulated Phase Change Materials Subjected to External Convection,” Int. J. Heat Mass Transfer 149:119205, 2020, doi:10.1016/j.ijheatmasstransfer.2019.119205. es_ES
dc.description.references Monelletta, L. , “Contribution to the Study of Combustion Noise of Automotive Diesel Engines”, Doctoral dissertation, Universitat Politècnica de València, 2010. es_ES
dc.description.references De Lima Moradell, D.A. , “Analysis of Combustion Concepts in a Poppet Valve Two-Stroke Downsized Compression Ignition Engine Designed for Passenger Car Applications,” Doctoral dissertation, Universitat Politècnica de València, 2016. es_ES
dc.description.references Broatch, A., Margot, X., Garcia-Tiscar, J., and Escalona, J. , “Validation and Analysis of Heat Losses Prediction Using Conjugate Heat Transfer Simulation for an Internal Combustion Engine,” SAE Technical Paper, 2019-24-0091, 2019, doi:10.4271/2019-24-0091. es_ES
dc.description.references Olmeda, P., Margot, X., Quintero, P., and Escalona, J. , “Numerical Approach to Define a Thermodynamically Equivalent Material for the Conjugate Heat Transfer Simulation of Very Thin Coating Layers,” Int. J. Heat Mass Transfer 162:120377, 2020, doi:10.1016/j.ijheatmasstransfer.2020.120377. es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “New Approach to Study the Heat Transfer in Internal Combustion Engines by 3D Modelling,” Int. J. Therm. Sci. 138:405-415, 2019, doi:10.1016/j.ijthermalsci.2019.01.006. es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., and Escalona, J. , “Conjugate Heat Transfer Study of the Impact of ‘Thermo-Swing’ Coatings on Internal Combustion Engines Heat Losses,” Int. J. Engine Res., 2020, doi:10.1177/1468087420960617. es_ES
dc.description.references Broatch, A., Olmeda, P., Margot, X., and Gomez-Soriano, J. , “A One-Dimensional Modeling Study on the Effect of Advanced Insulation Coatings on Internal Combustion Engine Efficiency,” Int. J. Engine Res.1468087420921584, 2020, doi:10.1177/1468087420921584. es_ES
dc.description.references Senecal, P.K., Richards, K., and Pomraning, E. , “CONVERGE 2.4 Manual,” Madison, WI, 2019. es_ES
dc.description.references Gómez Soriano, J. , “Computational Assessment of Combustion Noise of Automotive Compression-Ignited Engines”, Doctoral dissertation, Universitat Politècnica de València, 2018. es_ES
dc.description.references Versteeg, H.K., and Malalasekera, W. , An Introduction to Computational Fluid Dynamics - The Finite Volume Method 2nd Edition (Pearson Educational Limited, 2007). es_ES
dc.description.references Bredberg, J. , “On the Wall Boundary Condition for Turbulence Models”, Chalmers University of Technology, Department of Thermo and Fluid Dynamics, Internal Report 00/4,” Goteborg, 2000. es_ES
dc.description.references Habchi, C., Lafossas, F.A., Béard, P., and Broseta, D. , “Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion,” SAE Transactions1421-1431, 2004, doi:10.4271/2004-01-1996. es_ES
dc.description.references O'Rourke, P.J., and Amsden, A.A. , “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” SAE Transactions2000-2013, 1996, doi:10.4271/961961. es_ES
dc.description.references Senecal, P.K., Pomraning, E., Richards, K.J., Briggs, T.E. et al. , “Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length using CFD and Parallel Detailed Chemistry,” SAE Transactions1331-1351, 2003, doi:10.4271/2003-01-1043. es_ES
dc.description.references Amsden, A.A., and Findley, M. , “KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves”, No. LA-13313-MS Lawrence Livermore National Lab.(LLNL) Livermore, CA (United States), 1997. es_ES
dc.description.references Broatch, A., Margot, X., Novella, R., and Gómez-Soriano, J. , “Impact of the Injector Design on the Combustion Noise of Gasoline Partially Premixed Combustion in A 2-Stroke Engine,” Appl. Therm. Eng. 119:530-540, 2017, doi:10.1016/j.applthermaleng.2017.03.081. es_ES
dc.description.references Gonera, M., and Sandin, O. , “Thermal Analysis of a Diesel Piston and Cylinder Liner Using the Inverse Heat Conduction Method”, Chalmers University of Technology, Goteborg, Sweden, 2015. es_ES
dc.description.references Lu, Y., Zhang, X., Xiang, P., and Dong, D. , “Analysis of Thermal Temperature Fields and Thermal Stress under Steady Temperature Field of Diesel Engine Piston,” Appl. Thermal Eng. 113:796-812, 2017, doi:10.1016/j.applthermaleng.2016.11.070. es_ES
dc.description.references Paweł, M., and Geca, M. , “FEM Analysis of Piston for Aircraft Two Stroke Diesel Engine,” MATEC Web of Conferences 252:07004, 2019, doi:10.1051/matecconf/201925207004. es_ES
dc.description.references Esfahanian, V., Javaheri, A., and Ghaffarpour, M. , “Thermal Analysis of an SI Engine Piston using Different Combustion Boundary Condition Treatments,” Appl. Therm. Eng. 26(2-3):277-287, 2006, doi:10.1016/j.applthermaleng.2005.05.002. es_ES
dc.description.references Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.M. et al. , “Modeling Investigation of Thermal Insulation Approaches for Low Heat Rejection Diesel Engines using a Conjugate Heat Transfer Model,” Int. J. Engine Res. 20, 92(1, 1042019), 2019, 2019, doi:10.1177/1468087418818264. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem