- -

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

Show full item record

Rajasegar, R.; Niki, Y.; García-Oliver, JM.; Li, Z.; Musculus, M. (2021). Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas. SAE International. 1-16. https://doi.org/10.4271/2021-01-0525

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/190762

Files in this item

Item Metadata

Title: Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas
Author: Rajasegar, Rajavasanth Niki, Yoichi García-Oliver, José M Li, Zheming Musculus, Mark
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Issued date:
Abstract:
[EN] The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects ...[+]
Copyrigths: Reserva de todos los derechos
Source:
SAE Technical Papers. (issn: 0148-7191 )
DOI: 10.4271/2021-01-0525
Publisher:
SAE International
Publisher version: https://doi.org/10.4271/2021-01-0525
Conference name: SAE World Congress Experience (WCX 2021)
Conference place: Online
Conference date: Abril 13-15,2021
Project ID:
info:eu-repo/grantAgreement/DOE//DE-NA0003525/
Thanks:
This research was sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Optical engine experiments were conducted at the Combustion Research Facility of Sandia National ...[+]
Type: Comunicación en congreso Artículo

References

Liu, J. et al. , “Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine with Optimized Pilot Injection Timing,” Applied Energy 110:201-206, 2013.

Rochussen, J., Yeo, J., and Kirchen, P. , “Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion,” SAE Technical Paper 2016-01-0792, 2016, https://doi.org/10.4271/2016-01-0792.

Schlatter, S. et al. , “Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine,” SAE Technical Paper 2012-01-0825, 2012, https://doi.org/10.4271/2012-01-0825. [+]
Liu, J. et al. , “Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine with Optimized Pilot Injection Timing,” Applied Energy 110:201-206, 2013.

Rochussen, J., Yeo, J., and Kirchen, P. , “Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion,” SAE Technical Paper 2016-01-0792, 2016, https://doi.org/10.4271/2016-01-0792.

Schlatter, S. et al. , “Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine,” SAE Technical Paper 2012-01-0825, 2012, https://doi.org/10.4271/2012-01-0825.

Schlatter, S. et al. , “N-Heptane Micro Pilot Assisted Methane Combustion in a Rapid Compression Expansion Machine,” Fuel 179:339-352, 2016.

Dronniou, N. et al. , “Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions,” SAE Technical Paper 2014-01-1313, 2014, https://doi.org/10.4271/2014-01-1313.

Nithyanandan, K. et al. , “An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine,” SAE Technical Paper 2017-01-0755, 2017, https://doi.org/10.4271/2017-01-0755.

Salaun, E. et al. , “Optical Investigation of Ignition Timing and Equivalence Ratio in Dual-Fuel CNG/Diesel Combustion,” SAE Technical Paper 2016-01-0772, 2016, https://doi.org/10.4271/2016-01-0772.

Borghesi, G., Mastorakos, E., and Cant, R.S. , “Complex Chemistry DNS of n-Heptane Spray Autoignition at High Pressure and Intermediate Temperature Conditions,” Combustion and Flame 160(7):1254-1275, 2013.

Dahms, R.N. et al. , “Understanding the Ignition Mechanism of High-Pressure Spray Flames,” Proceedings of the Combustion Institute 36(2):2615-2623, 2017.

Krisman, A., Hawkes, E.R., and Chen, J.H. , “Two-Stage Autoignition and Edge Flames in a High Pressure Turbulent Jet,” Journal of Fluid Mechanics 824:5-41, 2017.

Skeen, S.A., Manin, J., and Pickett, L.M. , “Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames,” Proceedings of the Combustion Institute 35(3):3167-3174, 2015.

Karim, G.A. , “Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type,” Journal of Engineering for Gas Turbines and Power 125(3):827-836, 2003.

Rajasegar, R. et al. , “Influence of Pilot-Fuel Mixing on the Spatio-Temporal Progression of Two Stage Autoignition of Diesel-Sprays in Low-Reactivity Ambient Fuel-Air Mixture,” Proceedings of the Combustion Institute, 2020.

Niki, Y. et al. , “Verification of Diesel Spray Ignition Phenomenon in Dual-Fuel Premixed Natural Gas Engine,” International Journal of Engine Research, 2020.

Srna, A. et al. , “Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines,” Proceedings of the Combustion Institute 37(4):4741-4749, 2019.

Wong, Y.K., and Karim, G.A. , “A Kinetic Examination of the Effects of Recycled Exhaust Gases on the Autoignition of Homogeneous N-Heptane-Air Mixtures in Engines,” SAE Technical Paper 2000-01-2037, 2000, https://doi.org/10.4271/2000-01-2037.

Liu, Z., and Karim, G.A. , “An Examination of the Ignition Delay Period in Gas-Fueled Diesel Engines,” Journal of Engineering for Gas Turbines and Power 120(1):225-231, 1998.

Badr, O., Karim, G.A., and Liu, B. , “An Examination of the Flame Spread Limits in a Dual Fuel Engine,” Applied Thermal Engineering 19(10):1071-1080, 1999.

Genzale, C.L., Reitz, R.D., and Musculus, M.P.B. , “Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion,” SAE Technical Paper 2009-01-2699, 2009, https://doi.org/10.4271/2009-01-2699.

Dec, J.E. , “A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*,” SAE Technical Paper 970873, 1997, https://doi.og/10.4271/970873.

Espey, C., and Dec, J.E. , “Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-Speed Visualization and 2-D Laser Imaging,” SAE Technical Paper 930971, 1993, https://doi.org/10.4271/930971.

Heywood, J.B. , Internal Combustion Engine Fundamentals (New York: McGraw-Hill, 1988).

Kokjohn, S.L., Musculus, M.P.B., and Reitz, R.D. , “Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine Using Optical Diagnostics and Chemical Kinetics Modeling,” Combustion and Flame 162(6):2729-2742, 2015.

Pickett, L.M., Siebers, D.L., and Idicheria, C.A. , “Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets,” SAE Technical Paper 2005-01-3843, 2005, https://doi.org/10.4271/2005-01-3843.

Siebers, D.L., and Higgins, B. , “Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions,” SAE Technical Paper 2001-01-0530, 2001, https://doi.org/10.4271/2001-01-0530.

Anders, H. et al. , “A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging,” SAE Technical Paper 1999-01-3680, 1999, https://doi.org/10.4271/2001-01-3680.

Dec, J.E., Hwang, W., and Sjöberg, M. , “An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging,” SAE Technical Paper 2006-01-1518, 2006, https://doi.org/10.4271/2006-01-1518.

Mehl, M. et al. , “Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine,” SAE Technical Paper 2009-01-1806, 2009, https://doi.org/10.4271/2009-01-1806.

Mehl, M. et al. , “Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proceedings of the Combustion Institute 33(1):193-200, 2011.

Rothman, L.S. et al. , “The HITRAN Database: 1986 Edition,” Applied Optics 26(19):4058-4097, 1987.

Goldenstein, C.S. et al. , “SpectraPlot.com: Integrated Spectroscopic Modeling of Atomic and Molecular Gases,” Journal of Quantitative Spectroscopy and Radiative Transfer 200:249-257, 2017.

Dec, J.E., and Hwang, W. , “Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry,” SAE Technical Paper 2009-01-0650, 2009, https://doi.org/10.4271/2009-01-0650.

Stanton, D.W. , “Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations,” SAE Technical Paper 2013-01-2421, 2013, https://doi.org/10.4271/2013-01-2421.

Musculus, M.P.B., and Kattke, K. , “Entrainment Waves in Diesel Jets,” SAE International Journal of Engines 2(1):1170-1193, 2009.

Musculus, M.P.B. et al. , “End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines,” SAE Technical Paper 2007-01-0907, 2007, https://doi.org/10.4271/2007-01-0907.

Huestis, E., Erickson, P.A., and Musculus, M.P.B. , “In-Cylinder and Exhaust Soot in Low-Temperature Combustion Using a Wide-Range of EGR in a Heavy-Duty Diesel Engine,” SAE Technical Paper 2007-01-4017, 2007, https://doi.org/10.4271/2007-01-4017.

Idicheria, C.A., and Pickett, L.M. , “Ignition, Soot Formation, and End-of-Combustion Transients in Diesel Combustion Under High-EGR Conditions,” International Journal of Engine Research 12(4):376-392, 2011.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record