- -

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rajasegar, Rajavasanth es_ES
dc.contributor.author Niki, Yoichi es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author Li, Zheming es_ES
dc.contributor.author Musculus, Mark es_ES
dc.date.accessioned 2022-12-16T08:09:16Z
dc.date.available 2022-12-16T08:09:16Z
dc.date.issued 2021-04-15 es_ES
dc.identifier.issn 0148-7191 es_ES
dc.identifier.uri http://hdl.handle.net/10251/190762
dc.description.abstract [EN] The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold. Optical diagnostics include: infrared (IR) imaging for quantifying both the in-cylinder NG concentration and the pilot-jet penetration rate and spreading angle, high-speed cool-flame chemiluminescence imaging as an indicator of low-temperature heat release (LTHR), and high-speed OH* chemiluminescence imaging as an indicator high-temperature heat release (HTHR). To aid interpretation of the experimental observations, zero-dimensional chemical kinetics simulations provide further understanding of the underlying interplay between the physical and chemical processes of mixing (pilot fuel-jet entrainment) and autoignition (two-stage ignition chemistry). Increasing the premixed NG concentration prolongs the ignition delay of the pilot fuel and increases the combustion duration. Due to the relatively short pilot-fuel injections utilized, the transient increase in entrainment near the end of injection (entrainment wave) plays an important role in mixing. To achieve desired combustion characteristics, i.e., ignition and combustion timing (e.g., for combustion phasing) and location (e.g., for reducing wall heat-transfer or tailoring charge stratification), injection parameters can be suitably selected to yield the necessary mixing trajectories that potentially help offset changes in fuel ignition chemistry, which could be a valuable tool for combustion design. es_ES
dc.description.sponsorship This research was sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Optical engine experiments were conducted at the Combustion Research Facility of Sandia National Laboratories in Livermore, CA. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration (NNSA) under contract DE-NA0003525. We gratefully acknowledge the contributions of Keith Penney and Dave Cicone for their assistance in developing research tools and maintaining the optical engine. es_ES
dc.language Inglés es_ES
dc.publisher SAE International es_ES
dc.relation.ispartof SAE Technical Papers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas es_ES
dc.type Comunicación en congreso es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4271/2021-01-0525 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-NA0003525/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Rajasegar, R.; Niki, Y.; García-Oliver, JM.; Li, Z.; Musculus, M. (2021). Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas. SAE International. 1-16. https://doi.org/10.4271/2021-01-0525 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename SAE World Congress Experience (WCX 2021) es_ES
dc.relation.conferencedate Abril 13-15,2021 es_ES
dc.relation.conferenceplace Online es_ES
dc.relation.publisherversion https://doi.org/10.4271/2021-01-0525 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\434601 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.description.references Liu, J. et al. , “Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine with Optimized Pilot Injection Timing,” Applied Energy 110:201-206, 2013. es_ES
dc.description.references Rochussen, J., Yeo, J., and Kirchen, P. , “Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion,” SAE Technical Paper 2016-01-0792, 2016, https://doi.org/10.4271/2016-01-0792. es_ES
dc.description.references Schlatter, S. et al. , “Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine,” SAE Technical Paper 2012-01-0825, 2012, https://doi.org/10.4271/2012-01-0825. es_ES
dc.description.references Schlatter, S. et al. , “N-Heptane Micro Pilot Assisted Methane Combustion in a Rapid Compression Expansion Machine,” Fuel 179:339-352, 2016. es_ES
dc.description.references Dronniou, N. et al. , “Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions,” SAE Technical Paper 2014-01-1313, 2014, https://doi.org/10.4271/2014-01-1313. es_ES
dc.description.references Nithyanandan, K. et al. , “An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine,” SAE Technical Paper 2017-01-0755, 2017, https://doi.org/10.4271/2017-01-0755. es_ES
dc.description.references Salaun, E. et al. , “Optical Investigation of Ignition Timing and Equivalence Ratio in Dual-Fuel CNG/Diesel Combustion,” SAE Technical Paper 2016-01-0772, 2016, https://doi.org/10.4271/2016-01-0772. es_ES
dc.description.references Borghesi, G., Mastorakos, E., and Cant, R.S. , “Complex Chemistry DNS of n-Heptane Spray Autoignition at High Pressure and Intermediate Temperature Conditions,” Combustion and Flame 160(7):1254-1275, 2013. es_ES
dc.description.references Dahms, R.N. et al. , “Understanding the Ignition Mechanism of High-Pressure Spray Flames,” Proceedings of the Combustion Institute 36(2):2615-2623, 2017. es_ES
dc.description.references Krisman, A., Hawkes, E.R., and Chen, J.H. , “Two-Stage Autoignition and Edge Flames in a High Pressure Turbulent Jet,” Journal of Fluid Mechanics 824:5-41, 2017. es_ES
dc.description.references Skeen, S.A., Manin, J., and Pickett, L.M. , “Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames,” Proceedings of the Combustion Institute 35(3):3167-3174, 2015. es_ES
dc.description.references Karim, G.A. , “Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type,” Journal of Engineering for Gas Turbines and Power 125(3):827-836, 2003. es_ES
dc.description.references Rajasegar, R. et al. , “Influence of Pilot-Fuel Mixing on the Spatio-Temporal Progression of Two Stage Autoignition of Diesel-Sprays in Low-Reactivity Ambient Fuel-Air Mixture,” Proceedings of the Combustion Institute, 2020. es_ES
dc.description.references Niki, Y. et al. , “Verification of Diesel Spray Ignition Phenomenon in Dual-Fuel Premixed Natural Gas Engine,” International Journal of Engine Research, 2020. es_ES
dc.description.references Srna, A. et al. , “Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines,” Proceedings of the Combustion Institute 37(4):4741-4749, 2019. es_ES
dc.description.references Wong, Y.K., and Karim, G.A. , “A Kinetic Examination of the Effects of Recycled Exhaust Gases on the Autoignition of Homogeneous N-Heptane-Air Mixtures in Engines,” SAE Technical Paper 2000-01-2037, 2000, https://doi.org/10.4271/2000-01-2037. es_ES
dc.description.references Liu, Z., and Karim, G.A. , “An Examination of the Ignition Delay Period in Gas-Fueled Diesel Engines,” Journal of Engineering for Gas Turbines and Power 120(1):225-231, 1998. es_ES
dc.description.references Badr, O., Karim, G.A., and Liu, B. , “An Examination of the Flame Spread Limits in a Dual Fuel Engine,” Applied Thermal Engineering 19(10):1071-1080, 1999. es_ES
dc.description.references Genzale, C.L., Reitz, R.D., and Musculus, M.P.B. , “Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion,” SAE Technical Paper 2009-01-2699, 2009, https://doi.org/10.4271/2009-01-2699. es_ES
dc.description.references Dec, J.E. , “A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*,” SAE Technical Paper 970873, 1997, https://doi.og/10.4271/970873. es_ES
dc.description.references Espey, C., and Dec, J.E. , “Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-Speed Visualization and 2-D Laser Imaging,” SAE Technical Paper 930971, 1993, https://doi.org/10.4271/930971. es_ES
dc.description.references Heywood, J.B. , Internal Combustion Engine Fundamentals (New York: McGraw-Hill, 1988). es_ES
dc.description.references Kokjohn, S.L., Musculus, M.P.B., and Reitz, R.D. , “Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine Using Optical Diagnostics and Chemical Kinetics Modeling,” Combustion and Flame 162(6):2729-2742, 2015. es_ES
dc.description.references Pickett, L.M., Siebers, D.L., and Idicheria, C.A. , “Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets,” SAE Technical Paper 2005-01-3843, 2005, https://doi.org/10.4271/2005-01-3843. es_ES
dc.description.references Siebers, D.L., and Higgins, B. , “Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions,” SAE Technical Paper 2001-01-0530, 2001, https://doi.org/10.4271/2001-01-0530. es_ES
dc.description.references Anders, H. et al. , “A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging,” SAE Technical Paper 1999-01-3680, 1999, https://doi.org/10.4271/2001-01-3680. es_ES
dc.description.references Dec, J.E., Hwang, W., and Sjöberg, M. , “An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging,” SAE Technical Paper 2006-01-1518, 2006, https://doi.org/10.4271/2006-01-1518. es_ES
dc.description.references Mehl, M. et al. , “Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine,” SAE Technical Paper 2009-01-1806, 2009, https://doi.org/10.4271/2009-01-1806. es_ES
dc.description.references Mehl, M. et al. , “Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proceedings of the Combustion Institute 33(1):193-200, 2011. es_ES
dc.description.references Rothman, L.S. et al. , “The HITRAN Database: 1986 Edition,” Applied Optics 26(19):4058-4097, 1987. es_ES
dc.description.references Goldenstein, C.S. et al. , “SpectraPlot.com: Integrated Spectroscopic Modeling of Atomic and Molecular Gases,” Journal of Quantitative Spectroscopy and Radiative Transfer 200:249-257, 2017. es_ES
dc.description.references Dec, J.E., and Hwang, W. , “Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry,” SAE Technical Paper 2009-01-0650, 2009, https://doi.org/10.4271/2009-01-0650. es_ES
dc.description.references Stanton, D.W. , “Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations,” SAE Technical Paper 2013-01-2421, 2013, https://doi.org/10.4271/2013-01-2421. es_ES
dc.description.references Musculus, M.P.B., and Kattke, K. , “Entrainment Waves in Diesel Jets,” SAE International Journal of Engines 2(1):1170-1193, 2009. es_ES
dc.description.references Musculus, M.P.B. et al. , “End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines,” SAE Technical Paper 2007-01-0907, 2007, https://doi.org/10.4271/2007-01-0907. es_ES
dc.description.references Huestis, E., Erickson, P.A., and Musculus, M.P.B. , “In-Cylinder and Exhaust Soot in Low-Temperature Combustion Using a Wide-Range of EGR in a Heavy-Duty Diesel Engine,” SAE Technical Paper 2007-01-4017, 2007, https://doi.org/10.4271/2007-01-4017. es_ES
dc.description.references Idicheria, C.A., and Pickett, L.M. , “Ignition, Soot Formation, and End-of-Combustion Transients in Diesel Combustion Under High-EGR Conditions,” International Journal of Engine Research 12(4):376-392, 2011. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem