Aleksa, M., Blomer, J., Cure, B., et al.: Strategic R &D Programme on Technologies for Future Experiments. Tech. rep, CERN, Geneva (2018)
Altenmüller, K., Cebrián, S., Dafni, T., et al.: REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 273(108), 281 (2022). https://doi.org/10.1016/j.cpc.2021.108281
Amazon Amazon Simple Storage Service Documentation. https://docs.aws.amazon.com/s3/. Accessed 1 Feb 2022 (2021)
[+]
Aleksa, M., Blomer, J., Cure, B., et al.: Strategic R &D Programme on Technologies for Future Experiments. Tech. rep, CERN, Geneva (2018)
Altenmüller, K., Cebrián, S., Dafni, T., et al.: REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 273(108), 281 (2022). https://doi.org/10.1016/j.cpc.2021.108281
Amazon Amazon Simple Storage Service Documentation. https://docs.aws.amazon.com/s3/. Accessed 1 Feb 2022 (2021)
Andreozzi, S., Magnoni, L., Zappi, R.: Towards the integration of StoRM on Amazon Simple Storage Service (S3). J. Phys. 119(6), 062011 (2008). https://doi.org/10.1088/1742-6596/119/6/062011
Apollinari, G., Béjar Alonso, I., Brüning, O. et al: High-luminosity large Hadron Collider (HL-LHC): Technical Design Report V. 0.1. Tech. rep., CERN, (2017) https://doi.org/10.23731/CYRM-2017-004
Arsuaga-Ríos, M., Heikkilä, S.S., Duellmann, D., et al.: Using S3 cloud storage with ROOT and CvmFS. J. Phys. 664(2), 022001 (2015). https://doi.org/10.1088/1742-6596/664/2/022001
Badino, P., Barring, O., Baud, J.P., et al: The Storage Resource Manager Interface Specification (v2.2). (2009) https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html
Bevilacqua, G., Bi, H.Y., Hartanto, H.B., et al.: $$\bar{tt}\bar{bb}$$ at the LHC: on the size of corrections and b-jet definitions. J. High Energy Phys. 8, 1–37 (2021). https://doi.org/10.1007/JHEP08(2021)008
Bird, I.: Computing for the Large Hadron Collider. Annu. Rev. Nucl. Particle Sci. 61(1), 99–118 (2011). https://doi.org/10.1146/annurev-nucl-102010-130059
Birrittella, M.S., Debbage, M., Huggahalli, R., et al: Intel omni-path architecture: enabling scalable, high performance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pp 1–9 (2015) https://doi.org/10.1109/HOTI.2015.22
Blomer, J., Canal, P., Naumann, A., et al: Evolution of the ROOT Tree I/O. In: 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), (2020) https://doi.org/10.1051/epjconf/202024502030
Braam, P.: The Lustre Storage Architecture. (2019) https://arxiv.org/abs/1903.01955
Brun, R., Rademakers, F.: ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A 389(1), 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X
Calder, B., Wang, J., Ogus, A. et al.: Windows Azure Storage: a highly available cloud storage service with strong consistency. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. Association for Computing Machinery, New York, NY, USA, SOSP ’11, pp. 143–157, (2011) https://doi.org/10.1145/2043556.2043571
Carrier, J.: Disrupting high performance storage with intel DC persistent memory & DAOS. In: IXPUG 2019 Annual Conference at CERN. (2019) https://cds.cern.ch/record/2691951
Charbonneau, A., Agarwal, A., Anderson, M., et al.: Data intensive high energy physics analysis in a distributed cloud. J. Phys. 341(012), 003 (2012). https://doi.org/10.1088/1742-6596/341/1/012003
Dai, D., Chen, Y., Kimpe, D., et al.: Provenance-based prediction scheme for object storage system in HPC. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 550–551, (2014) https://doi.org/10.1109/CCGrid.2014.27
DAOS developers (2022) Caching. https://docs.daos.io/v2.0/user/filesystem/#caching. Accessed 30 July 2022
Din, I.U., Hassan, S., Almogren, A., et al.: PUC: packet update caching for energy efficient IoT-based information-centric networking. Future Gener. Comput. Syst. 111, 634–643 (2020). https://doi.org/10.1016/j.future.2019.11.022
Dorigo, A., Elmer, P., Furano, F., et al.: XROOTD—a highly scalable architecture for data access. WSEAS Trans. Comput. 4, 348–353 (2005)
Elsen, E.: A roadmap for HEP software and computing R &D for the 2020s. Comput. Softw. Big Sci. (2019). https://doi.org/10.1007/s41781-019-0031-6
Hanushevsky, A., Ito, H., Lassnig, M., et al.: Xcache in the atlas distributed computing environment. EPJ Web Conf. 214, 04008 (2019). https://doi.org/10.1051/epjconf/201921404008
ISO Central Secretary (2014) Information technology—Procedures for the operation of object identifier registration authorities—Part 8: Generation of universally unique identifiers (UUIDs) and their use in object identifiers. Standard ISO/IEC 9834-8:2014, International Organization for Standardization, Geneva, CH, https://www.iso.org/standard/62795.html
Jette, M., Dunlap, C., Garlick, J. et al.: Slurm: simple linux utility for resource management. Tech. rep., LLNL, (2002) https://www.osti.gov/biblio/15002962
Kang, G., Kong, D., Wang, L., et al.: OStoreBench: benchmarking distributed object storage systems using real-world application scenarios. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and Optimizing, pp. 90–105. Springer International Publishing, Cham (2021)
LHCb Collaboration (2017) Matter antimatter differences (b meson decays to three hadrons)—project notebook. http://opendata.cern.ch/record/4902. Accessed 1 Feb 2022
Liang, Z., Lombardi, J., Chaarawi, M., et al.: DAOS: a scale-out high performance storage stack for storage class memory. In: Panda, D.K. (ed.) Supercomputing Frontiers, pp. 40–54. Springer International Publishing, Cham (2020)
Liu, J., Koziol, Q., Butler, G.F. et al.: Evaluation of HPC application I/O on object storage systems. In: 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage Data Intensive Scalable Computing Systems (PDSW-DISCS), pp. 24–34 (2018) https://doi.org/10.1109/PDSW-DISCS.2018.00005
Lombardi, J.: DAOS: Nextgen Storage Stack for AI, Big Data and Exascale HPC. CERN openlab Technical Workshop. (2021) https://cds.cern.ch/record/2754116
López-Gómez, J., Blomer, J.: Exploring object stores for high-energy physics data storage. EPJ Web Conf. 251(02), 066 (2021). https://doi.org/10.1051/epjconf/202125102066
Matri, P., Alforov, Y., Brandon, A. et al.: Could blobs fuel storage-based convergence between HPC and big data? In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 81–86, (2017) https://doi.org/10.1109/CLUSTER.2017.63
Mu, J., Soumagne, J., Tang, H. et al.: A transparent server-managed object storage system for HPC. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 477–481, (2018) https://doi.org/10.1109/CLUSTER.2018.00063
Padulano, V.E., Cervantes Villanueva, J., Guiraud, E., et al.: Distributed data analysis with ROOT RDataFrame. EPJ Web Conf. 245(03), 009 (2020). https://doi.org/10.1051/epjconf/202024503009
Padulano, V.E., Tejedor Saavedra, E., Alonso-Jordá, P.: Fine-grained data caching approaches to speedup a distributed RDataFrame analysis. EPJ Web Conf. 251(02), 027 (2021). https://doi.org/10.1051/epjconf/202125102027
Panda, D.K., Sur, S.: InfiniBand. Springer, Boston, pp. 927–935. (2011) https://doi.org/10.1007/978-0-387-09766-4_21
Piparo, D., Canal, P., Guiraud, E., et al.: RDataFrame: easy parallel ROOT analysis at 100 threads. EPJ Web Conf. 214(06), 029 (2019). https://doi.org/10.1051/epjconf/201921406029
Plechschmidt, U.: Lustre expands its lead in the Top 100 supercomputers. https://community.hpe.com/t5/Advantage-EX/Lustre-expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.YukqZUhByXJ. Accessed 2 August 2022 (2021)
ROOT team (2021) RNTuple class reference guide. https://root.cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.html. Accessed 1 Feb 2022
ROOT team (2021) TTree class reference guide. https://root.cern.ch/doc/master/classTTree.html. Accessed 1 Feb 2022
Rupprecht, L., Zhang, R., Hildebrand, D.: Big data analytics on object stores : a performance study. In: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC’14) (2014)
Rupprecht, L., Zhang, R., Owen, B. et al.: SwiftAnalytics: optimizing object storage for big data analytics. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 245–251. https://doi.org/10.1109/IC2E.2017.19 (2017)
Seiz, M., Offenhäuser, P., Andersson, S., et al.: Lustre I/O performance investigations on Hazel Hen: experiments and heuristics. J. Supercomput. 77, 12508–12536 (2021). https://doi.org/10.1007/s11227-021-03730-7
Shin, H., Lee, K., Kwon, H.: A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark. J. Supercomput. 78, 2556–2579 (2022). https://doi.org/10.1007/s11227-021-03946-7
Soumagne, J., Henderson, J., Chaarawi, M., et al.: Accelerating HDF5 I/O for exascale using DAOS. IEEE Trans. Parallel Distrib. Syst. 33(4), 903–914 (2022). https://doi.org/10.1109/TPDS.2021.3097884
Spiga, D., Ciangottini, D., Tracolli, M., et al.: Smart caching at CMS: applying AI to XCache edge services. EPJ Web Conf. 245, 04024 (2020). https://doi.org/10.1051/epjconf/202024504024
Tang, H., Byna, S., Tessier, F. et al.: Toward scalable and asynchronous object-centric data management for HPC. In: 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 113–122 (2018) https://doi.org/10.1109/CCGRID.2018.00026
Tannenbaum, T., Wright, D., Miller, K., et al.: Condor—a distributed job scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux. MIT Press, New York (2001)
The ATLAS Collaboration, Aad, G., Abat, E., et al.: The ATLAS experiment at the CERN large Hadron Collider. J. Instrum. 3(08), S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/s08003
The LHCb collaboration: angular analysis of the rare decay $$B_s^0 \rightarrow \phi \mu ^+ \mu ^-$$. J. High Energy Phys. (2021). https://doi.org/10.1007/JHEP11(2021)043
The LHCb Collaboration, Alves, A.A., Andrade, L.M., et al.: The LHCb Detector at the LHC. JINST 3, S08,005 (2008). https://doi.org/10.1088/1748-0221/3/08/S08005 , also published by CERN Geneva in 2010
Vernik, G., Factor, M., Kolodner, E.K. et al.: Stocator: a high performance object store connector for spark. In: Proceedings of the 10th ACM International Systems and Storage Conference. Association for Computing Machinery, New York, NY, USA, SYSTOR ’17, (2017) https://doi.org/10.1145/3078468.3078496
Vincenzo Eduardo Padulano: Test suite repository. (2021) https://github.com/vepadulano/rdf-rntuple-daos-tests. Accessed 1 Feb 2022
Virgo Cluster: User Manual. (2022) https://hpc.gsi.de/virgo/preface.html. Accessed 2 Aug 2022
Vohra, D.: Apache Parquet, Apress, Berkeley, CA, pp. 325–335. (2016) https://doi.org/10.1007/978-1-4842-2199-0_8
Walker, C.J., Traynor, D.P., Martin, A.J.: Scalable Petascale storage for HEP using Lustre. J. Phys. 396(4), 042063 (2012). https://doi.org/10.1088/1742-6596/396/4/042063
Zhong, J., Huang, R.S., Lee, S.C.: A program for the Bayesian Neural Network in the ROOT framework. Comput. Phys. Commun. 182(12), 2655–2660 (2011). https://doi.org/10.1016/j.cpc.2011.07.019
[-]