- -

A caching mechanism to exploit object store speed in High Energy Physics analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A caching mechanism to exploit object store speed in High Energy Physics analysis

Mostrar el registro completo del ítem

Padulano, VE.; Tejedor Saavedra, E.; Alonso-Jordá, P.; López Gómez, J.; Blomer, J. (2022). A caching mechanism to exploit object store speed in High Energy Physics analysis. Cluster Computing. 1-16. https://doi.org/10.1007/s10586-022-03757-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191061

Ficheros en el ítem

Metadatos del ítem

Título: A caching mechanism to exploit object store speed in High Energy Physics analysis
Autor: Padulano, Vincenzo Eduardo Tejedor Saavedra, Enric Alonso-Jordá, Pedro López Gómez, Javier Blomer, Jakob
Entidad UPV: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
[EN] Data analysis workflows in High Energy Physics (HEP) read data written in the ROOT columnar format. Such data has traditionally been stored in files that are often read via the network from remote storage facilities, ...[+]
Palabras clave: ROOT , High Energy Physics , Caching , Object store , DAOS
Derechos de uso: Reserva de todos los derechos
Fuente:
Cluster Computing. (issn: 1386-7857 )
DOI: 10.1007/s10586-022-03757-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10586-022-03757-2
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113656RB-C22/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES CONSCIENTES DEL CONSUMO ENERGETICO. APLICACIONES AL APRENDIZAJE PROFUNDO COMPUTACIONAL - UPV/
Agradecimientos:
This work benefited from the support of the CERN Strategic R&D Programme on Technologies for Future Experiments [1] and from grant PID2020-113656RB-C22 funded by Ministerio de Ciencia e Innovacion MCIN/AEI/10.13039/501100011033. ...[+]
Tipo: Artículo

References

Aleksa, M., Blomer, J., Cure, B., et al.: Strategic R &D Programme on Technologies for Future Experiments. Tech. rep, CERN, Geneva (2018)

Altenmüller, K., Cebrián, S., Dafni, T., et al.: REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 273(108), 281 (2022). https://doi.org/10.1016/j.cpc.2021.108281

Amazon Amazon Simple Storage Service Documentation. https://docs.aws.amazon.com/s3/. Accessed 1 Feb 2022 (2021) [+]
Aleksa, M., Blomer, J., Cure, B., et al.: Strategic R &D Programme on Technologies for Future Experiments. Tech. rep, CERN, Geneva (2018)

Altenmüller, K., Cebrián, S., Dafni, T., et al.: REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response. Comput. Phys. Commun. 273(108), 281 (2022). https://doi.org/10.1016/j.cpc.2021.108281

Amazon Amazon Simple Storage Service Documentation. https://docs.aws.amazon.com/s3/. Accessed 1 Feb 2022 (2021)

Andreozzi, S., Magnoni, L., Zappi, R.: Towards the integration of StoRM on Amazon Simple Storage Service (S3). J. Phys. 119(6), 062011 (2008). https://doi.org/10.1088/1742-6596/119/6/062011

Apollinari, G., Béjar Alonso, I., Brüning, O. et al: High-luminosity large Hadron Collider (HL-LHC): Technical Design Report V. 0.1. Tech. rep., CERN, (2017) https://doi.org/10.23731/CYRM-2017-004

Arsuaga-Ríos, M., Heikkilä, S.S., Duellmann, D., et al.: Using S3 cloud storage with ROOT and CvmFS. J. Phys. 664(2), 022001 (2015). https://doi.org/10.1088/1742-6596/664/2/022001

Badino, P., Barring, O., Baud, J.P., et al: The Storage Resource Manager Interface Specification (v2.2). (2009) https://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html

Bevilacqua, G., Bi, H.Y., Hartanto, H.B., et al.: $$\bar{tt}\bar{bb}$$ at the LHC: on the size of corrections and b-jet definitions. J. High Energy Phys. 8, 1–37 (2021). https://doi.org/10.1007/JHEP08(2021)008

Bird, I.: Computing for the Large Hadron Collider. Annu. Rev. Nucl. Particle Sci. 61(1), 99–118 (2011). https://doi.org/10.1146/annurev-nucl-102010-130059

Birrittella, M.S., Debbage, M., Huggahalli, R., et al: Intel omni-path architecture: enabling scalable, high performance fabrics. In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pp 1–9 (2015) https://doi.org/10.1109/HOTI.2015.22

Blomer, J., Canal, P., Naumann, A., et al: Evolution of the ROOT Tree I/O. In: 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), (2020) https://doi.org/10.1051/epjconf/202024502030

Braam, P.: The Lustre Storage Architecture. (2019) https://arxiv.org/abs/1903.01955

Brun, R., Rademakers, F.: ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A 389(1), 81–86 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

Calder, B., Wang, J., Ogus, A. et al.: Windows Azure Storage: a highly available cloud storage service with strong consistency. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. Association for Computing Machinery, New York, NY, USA, SOSP ’11, pp. 143–157, (2011) https://doi.org/10.1145/2043556.2043571

Carrier, J.: Disrupting high performance storage with intel DC persistent memory & DAOS. In: IXPUG 2019 Annual Conference at CERN. (2019) https://cds.cern.ch/record/2691951

Charbonneau, A., Agarwal, A., Anderson, M., et al.: Data intensive high energy physics analysis in a distributed cloud. J. Phys. 341(012), 003 (2012). https://doi.org/10.1088/1742-6596/341/1/012003

Dai, D., Chen, Y., Kimpe, D., et al.: Provenance-based prediction scheme for object storage system in HPC. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 550–551, (2014) https://doi.org/10.1109/CCGrid.2014.27

DAOS developers (2022) Caching. https://docs.daos.io/v2.0/user/filesystem/#caching. Accessed 30 July 2022

Din, I.U., Hassan, S., Almogren, A., et al.: PUC: packet update caching for energy efficient IoT-based information-centric networking. Future Gener. Comput. Syst. 111, 634–643 (2020). https://doi.org/10.1016/j.future.2019.11.022

Dorigo, A., Elmer, P., Furano, F., et al.: XROOTD—a highly scalable architecture for data access. WSEAS Trans. Comput. 4, 348–353 (2005)

Elsen, E.: A roadmap for HEP software and computing R &D for the 2020s. Comput. Softw. Big Sci. (2019). https://doi.org/10.1007/s41781-019-0031-6

Hanushevsky, A., Ito, H., Lassnig, M., et al.: Xcache in the atlas distributed computing environment. EPJ Web Conf. 214, 04008 (2019). https://doi.org/10.1051/epjconf/201921404008

ISO Central Secretary (2014) Information technology—Procedures for the operation of object identifier registration authorities—Part 8: Generation of universally unique identifiers (UUIDs) and their use in object identifiers. Standard ISO/IEC 9834-8:2014, International Organization for Standardization, Geneva, CH, https://www.iso.org/standard/62795.html

Jette, M., Dunlap, C., Garlick, J. et al.: Slurm: simple linux utility for resource management. Tech. rep., LLNL, (2002) https://www.osti.gov/biblio/15002962

Kang, G., Kong, D., Wang, L., et al.: OStoreBench: benchmarking distributed object storage systems using real-world application scenarios. In: Wolf, F., Gao, W. (eds.) Benchmarking, Measuring, and Optimizing, pp. 90–105. Springer International Publishing, Cham (2021)

LHCb Collaboration (2017) Matter antimatter differences (b meson decays to three hadrons)—project notebook. http://opendata.cern.ch/record/4902. Accessed 1 Feb 2022

Liang, Z., Lombardi, J., Chaarawi, M., et al.: DAOS: a scale-out high performance storage stack for storage class memory. In: Panda, D.K. (ed.) Supercomputing Frontiers, pp. 40–54. Springer International Publishing, Cham (2020)

Liu, J., Koziol, Q., Butler, G.F. et al.: Evaluation of HPC application I/O on object storage systems. In: 2018 IEEE/ACM 3rd International Workshop on Parallel Data Storage Data Intensive Scalable Computing Systems (PDSW-DISCS), pp. 24–34 (2018) https://doi.org/10.1109/PDSW-DISCS.2018.00005

Lombardi, J.: DAOS: Nextgen Storage Stack for AI, Big Data and Exascale HPC. CERN openlab Technical Workshop. (2021) https://cds.cern.ch/record/2754116

López-Gómez, J., Blomer, J.: Exploring object stores for high-energy physics data storage. EPJ Web Conf. 251(02), 066 (2021). https://doi.org/10.1051/epjconf/202125102066

Matri, P., Alforov, Y., Brandon, A. et al.: Could blobs fuel storage-based convergence between HPC and big data? In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 81–86, (2017) https://doi.org/10.1109/CLUSTER.2017.63

Mu, J., Soumagne, J., Tang, H. et al.: A transparent server-managed object storage system for HPC. In: 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 477–481, (2018) https://doi.org/10.1109/CLUSTER.2018.00063

Padulano, V.E., Cervantes Villanueva, J., Guiraud, E., et al.: Distributed data analysis with ROOT RDataFrame. EPJ Web Conf. 245(03), 009 (2020). https://doi.org/10.1051/epjconf/202024503009

Padulano, V.E., Tejedor Saavedra, E., Alonso-Jordá, P.: Fine-grained data caching approaches to speedup a distributed RDataFrame analysis. EPJ Web Conf. 251(02), 027 (2021). https://doi.org/10.1051/epjconf/202125102027

Panda, D.K., Sur, S.: InfiniBand. Springer, Boston, pp. 927–935. (2011) https://doi.org/10.1007/978-0-387-09766-4_21

Piparo, D., Canal, P., Guiraud, E., et al.: RDataFrame: easy parallel ROOT analysis at 100 threads. EPJ Web Conf. 214(06), 029 (2019). https://doi.org/10.1051/epjconf/201921406029

Plechschmidt, U.: Lustre expands its lead in the Top 100 supercomputers. https://community.hpe.com/t5/Advantage-EX/Lustre-expands-its-lead-in-the-Top-100-supercomputers/ba-p/7141807#.YukqZUhByXJ. Accessed 2 August 2022 (2021)

ROOT team (2021) RNTuple class reference guide. https://root.cern.ch/doc/master/structROOT_1_1Experimental_1_1RNTuple.html. Accessed 1 Feb 2022

ROOT team (2021) TTree class reference guide. https://root.cern.ch/doc/master/classTTree.html. Accessed 1 Feb 2022

Rupprecht, L., Zhang, R., Hildebrand, D.: Big data analytics on object stores : a performance study. In: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC’14) (2014)

Rupprecht, L., Zhang, R., Owen, B. et al.: SwiftAnalytics: optimizing object storage for big data analytics. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 245–251. https://doi.org/10.1109/IC2E.2017.19 (2017)

Seiz, M., Offenhäuser, P., Andersson, S., et al.: Lustre I/O performance investigations on Hazel Hen: experiments and heuristics. J. Supercomput. 77, 12508–12536 (2021). https://doi.org/10.1007/s11227-021-03730-7

Shin, H., Lee, K., Kwon, H.: A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark. J. Supercomput. 78, 2556–2579 (2022). https://doi.org/10.1007/s11227-021-03946-7

Soumagne, J., Henderson, J., Chaarawi, M., et al.: Accelerating HDF5 I/O for exascale using DAOS. IEEE Trans. Parallel Distrib. Syst. 33(4), 903–914 (2022). https://doi.org/10.1109/TPDS.2021.3097884

Spiga, D., Ciangottini, D., Tracolli, M., et al.: Smart caching at CMS: applying AI to XCache edge services. EPJ Web Conf. 245, 04024 (2020). https://doi.org/10.1051/epjconf/202024504024

Tang, H., Byna, S., Tessier, F. et al.: Toward scalable and asynchronous object-centric data management for HPC. In: 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 113–122 (2018) https://doi.org/10.1109/CCGRID.2018.00026

Tannenbaum, T., Wright, D., Miller, K., et al.: Condor—a distributed job scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux. MIT Press, New York (2001)

The ATLAS Collaboration, Aad, G., Abat, E., et al.: The ATLAS experiment at the CERN large Hadron Collider. J. Instrum. 3(08), S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/s08003

The LHCb collaboration: angular analysis of the rare decay $$B_s^0 \rightarrow \phi \mu ^+ \mu ^-$$. J. High Energy Phys. (2021). https://doi.org/10.1007/JHEP11(2021)043

The LHCb Collaboration, Alves, A.A., Andrade, L.M., et al.: The LHCb Detector at the LHC. JINST 3, S08,005 (2008). https://doi.org/10.1088/1748-0221/3/08/S08005 , also published by CERN Geneva in 2010

Vernik, G., Factor, M., Kolodner, E.K. et al.: Stocator: a high performance object store connector for spark. In: Proceedings of the 10th ACM International Systems and Storage Conference. Association for Computing Machinery, New York, NY, USA, SYSTOR ’17, (2017) https://doi.org/10.1145/3078468.3078496

Vincenzo Eduardo Padulano: Test suite repository. (2021) https://github.com/vepadulano/rdf-rntuple-daos-tests. Accessed 1 Feb 2022

Virgo Cluster: User Manual. (2022) https://hpc.gsi.de/virgo/preface.html. Accessed 2 Aug 2022

Vohra, D.: Apache Parquet, Apress, Berkeley, CA, pp. 325–335. (2016) https://doi.org/10.1007/978-1-4842-2199-0_8

Walker, C.J., Traynor, D.P., Martin, A.J.: Scalable Petascale storage for HEP using Lustre. J. Phys. 396(4), 042063 (2012). https://doi.org/10.1088/1742-6596/396/4/042063

Zhong, J., Huang, R.S., Lee, S.C.: A program for the Bayesian Neural Network in the ROOT framework. Comput. Phys. Commun. 182(12), 2655–2660 (2011). https://doi.org/10.1016/j.cpc.2011.07.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem