- -

Dietary inclusion of fermented ginger straw effect on the growth performance, gastrointestinal tract development and caecal fermentation of fattening rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dietary inclusion of fermented ginger straw effect on the growth performance, gastrointestinal tract development and caecal fermentation of fattening rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sun, Hai Tao es_ES
dc.contributor.author Wang, Yong es_ES
dc.contributor.author Bai, Li Ya es_ES
dc.contributor.author Liu, Ce es_ES
dc.contributor.author Xu, Yun Hua es_ES
dc.contributor.author Gao, Shu Xia es_ES
dc.contributor.author Jiang, Wen Xue es_ES
dc.contributor.author Yang, Li Ping es_ES
dc.contributor.author Liu, Gong Yan es_ES
dc.date.accessioned 2023-01-11T10:55:02Z
dc.date.available 2023-01-11T10:55:02Z
dc.date.issued 2022-12-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/191224
dc.description.abstract [EN] This experiment was conducted to evaluate the effects of dietary inclusion of fermented ginger straw on the growth performance, gastrointestinal tract development and caecal fermentation of fattening rabbits. A total of 160 45-d-old Laiwu black rabbits were randomly divided into 4 groups and fed 0% (Control), 5, 10 or 15% fermented ginger straw in their diet as a replacement for peanut straw powder. The trial lasted for 7 d of adaptation and 43 d for testing. Growth performance was recorded from 52 to 95 d of age (n=5 per treatment with 30 rabbits, 3 males and 3 females per replicate), TTAD of nutrients from 91 to 95 d of age, and gastrointestinal tract development, caecum fermentation and carcass traits were determined at 95 d of age (n=5 per treatment with 10 rabbits, 1 males and 1 females in per replicate).The results showed that the average daily gain and final body weight in the experimental groups (5, 10 and 15% fermented ginger straw) were higher than in the control group (P<0.05). However, the average daily feed intake in the 15% group was higher than in the other groups, while the total tract apparent digestibility of crude protein, ether extract, neutral detergent fibre and acid detergent fibre were lower than in the control group (P<0.05), and the relative weights of the stomach, small intestine and caecum content in the 15% substitution group were higher than those in the control group (P<0.05). In addition, the thickness of the muscle layer in the 15% substitution group was higher than that in the other groups (P<0.05). Moreover, pH and total volatile fatty acids concentration in the caecal content were similar among the 4 groups (P>0.05). The current work shows that fermented ginger straw could be used as roughage material in fattening rabbit production up to a dietary dose of 10%. es_ES
dc.description.sponsorship This study was supported by Earmarked Fund for Modern Agro-industry Technology Research System (CARS-43-G-7); Shandong Province Modern Agricultural Industry Technology System (SDAIT-21); Scientific and Technological Problems Project Unveiled by Shandong Academy of Agricultural Sciences (SHJB2021-43). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Fermented ginger straws es_ES
dc.subject Rabbits es_ES
dc.subject Growth performance es_ES
dc.subject Gastrointestinal tract development es_ES
dc.subject Caecal fermentation es_ES
dc.title Dietary inclusion of fermented ginger straw effect on the growth performance, gastrointestinal tract development and caecal fermentation of fattening rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.16093
dc.relation.projectID info:eu-repo/grantAgreement/Earmarked Fund for Modern Agro-industry Technology Research System //CARS-43-G-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Shandong Academy of Agricultural Sciences//SHJB2021-43 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Modern Agricultural Technology Industry System of Shandong province//SDAIT-21 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sun, HT.; Wang, Y.; Bai, LY.; Liu, C.; Xu, YH.; Gao, SX.; Jiang, WX.... (2022). Dietary inclusion of fermented ginger straw effect on the growth performance, gastrointestinal tract development and caecal fermentation of fattening rabbits. World Rabbit Science. 30(4):267-276. https://doi.org/10.4995/wrs.2022.16093 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.16093 es_ES
dc.description.upvformatpinicio 267 es_ES
dc.description.upvformatpfin 276 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\16093 es_ES
dc.contributor.funder Shandong Academy of Agricultural Sciences es_ES
dc.contributor.funder Earmarked Fund for Modern Agro-industry Technology Research System, China es_ES
dc.contributor.funder Modern Agricultural Technology Industry System of Shandong province es_ES
dc.description.references Abu Hafsa S., Hassan, A., Sabek, A., Elghandour, M., Barbabosa-Pliego A., Alqaisi, Q., Salem, A. 2021. Extracted and characterized humic substances as feed supplement in rabbit feeding: effects on performance, blood metabolites and caecal fermentation activity. Waste and Biomass Valorization, 12: 5471-5479. https://doi.org/10.1007/s12649-021-01392-3 es_ES
dc.description.references Association of Official Analytical Chemists (AOAC). 2005. Official methods of analyses. 18th ed. AOAC, Maryland, USA. es_ES
dc.description.references Bo˙zena N., Łukasz, W., Anna, C., Dorota, K., Paweł, B., Małgorzata, R., Marcin, Ł., Mariusz, F. 2021. Effects of fermented rapeseed meal on gastrointestinal morphometry and meat quality of rabbits (Oryctolagus cuniculus). Livest. Sci., 251: 104663. https://doi.org/10.1016/j.livsci.2021.104663 es_ES
dc.description.references Bovera, F., Marono, S., Di Meo C., Piccolo, G., Iannaccone, F., Nizza, A. 2010. Effect of mannan-oligosaccharides supplementation on caecal microbial activity of rabbits. Animal. 4: 522-1527. https://doi.org/10.1017/S1751731110000558 es_ES
dc.description.references Bovera, F., Lestingi, A., Marono, S., Iannaccone, F., Nizza, S., Mallardo, K., de Martino L., Tateo, A. 2012. Effect of dietary mannan-oligosaccharides on in vivo performance, nutrient digestibility and caecal content characteristics of growing rabbits. J. Anim. Physiol. Anim. Nutr., 96: 130-136. https://doi.org/10.1111/j.1439-0396.2011.01134.x es_ES
dc.description.references Carabaño, R., García, J., De Blas J.C. 2001. Effect of fibre source on ileal apparent digestibility of non-starch polysaccharides in rabbits. Animal Sci., 72: 343-350. https://doi.org/10.1017/S1357729800055843 es_ES
dc.description.references Carabaño, R., Villamide, M.J., García, J., Nicodemus, N., Llorente, A., Chamorro, S., Menoyo, D., García-Rebollar P., García-Ruiz A.I., De Blas J.C. 2009. New concepts and objectives for protein amino acid nutrition in rabbits. World Rabbit Sci., 17: 1-14. https://doi.org/10.4995/wrs.2009.664 es_ES
dc.description.references Chen, S., Deng, F., Jia, X., Liu, H, Zhang, G., Lai, S. 2019. Gut microbiota profiling with differential tolerance against the reduced dietary fibre level in rabbit. Sci. Rep-UK, 9: 288. https://doi.org/10.1038/s41598-018-36534-6 es_ES
dc.description.references Chiou, P.W.S., Yu, B., Lin, C. 1994. Effect of different components of dietary fibre on the intestinal morphology of domestic rabbits. Comp. Biochem. Physi. A., 108: 629-638. https://doi.org/10.1016/0300-9629(94)90349-2 es_ES
dc.description.references De Blas C., García, J., Carabaño, R. 1999. Role of fibre in rabbit diets. Ann. Zootech., 48: 3-13. https://doi.org/10.1051/animres:19990101 es_ES
dc.description.references De Blas C., Mateos, G. 2020. Feed formulation. In: C. De Blas and J. Wiseman, (ed), Nutrition of the Rabbit. CABI Publishing, New York, NY, USA. https://doi.org/10.1079/9781789241273.0000 es_ES
dc.description.references EU. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union L 276, 33-79. es_ES
dc.description.references Fortun-Lamothe L., Boullier, S. 2007. A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livest. Prod. Sci., 107: 1-18. https://doi.org/10.1016/j.livsci.2006.09.005 es_ES
dc.description.references Fraga, M.J., Pérez De Ayala P., Carabaño, R., De Blas C. 1991. Effect of type of fibre on rate of passage and on the contribution of soft faeces to nutrient intake of fattening rabbits. J. Anim. Sci., 69: 1566-1574. https://doi.org/10.2527/1991.6941566x es_ES
dc.description.references Gao, Q., Sun, Z.M., Zhang, C.B. 2019. Current situation, countermeasures and technology prospect of ginger straw. Agricultural Equipment and Vehicle Engineering, 57: 178-181. es_ES
dc.description.references García, J., Carabaño, R., De Blas J.C. 1999. Effect of fibre source on cell wall digestibility and rate of passage in rabbits. J. Anim. Sci., 77: 898-905. https://doi.org/10.2527/1999.774898x es_ES
dc.description.references García, J., Carabaño, R., Perez-Alba L., De Blas J.C. 2000. Effect of fibre source on caecal fermentation and nitrogen recycled through cecotrophy in rabbits. J. Anim. Sci., 78: 638-646. https://doi.org/10.2527/2000.783638x es_ES
dc.description.references García J., Gidenne T., Falcão-e-Cunha L., De Blas C. 2002a. Identification of the main factors that influence caecal fermentation traits in growing rabbits. Anim. Res., 51: 165-173. https://doi.org/10.1051/animres:2002011 es_ES
dc.description.references García J., Nicodemus N., Carabaño R., De Blas C. 2002b. Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. J. Anim. Sci., 80: 162-170. https://doi.org/10.2527/2002.801162x es_ES
dc.description.references Grela, E.R., Czech, A., Kiesz, M., Wlazło, Ł., Nowakowicz-Debek B. 2019. A fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr., 5: 373-379. https://doi.org/10.1016/j.aninu.2019.05.004 es_ES
dc.description.references Gidenne, T. 1992. Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. Br. J. Nutr., 61: 133-146. https://doi.org/10.1079/BJN19920015 es_ES
dc.description.references Gidenne, T. 2003. Fibres in rabbit feeding for digestive troubles prevention: respective role of low-digested and digestible fibre. Anim. Feed Sci. Technol., 81: 105-117. https://doi.org/10.1016/S0301-6226(02)00301-9 es_ES
dc.description.references Gidenne, T. 2015. Dietary fibres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal, 9: 227-242. https://doi.org/10.1017/S1751731114002729 es_ES
dc.description.references Gidenne, T., Bellier, R. 2000. Use of digestible fibre in replacement of available carbohydrates effect on digestion, rate of passage and caecal fermentation pattern during the growth of the rabbit. Livest. Prod. Sci., 63: 141-152. https://doi.org/10.1016/S0301-6226(99)00123-2 es_ES
dc.description.references Li, H., Zhang, X., Qi, D., Chen, S., Liu, Y., Gu, Z. 2014. Effects of peanut seedlings with different substitution ratios on apparent digestibility of nutrients in growing Rex rabbits. Chinese J. Anim Nutr., 26: 3676-3681. es_ES
dc.description.references Liu, G.Y., Sun, C.R., Zhao, X.Y., Liu, H.L., Wu, Z.Y., LI, F.C. 2018. Effect of substituting guinea grass with sunflower hulls on production performance and digestion traits in fattening rabbits. World Rabbit Sci., 26: 217-225. https://doi.org/10.4995/wrs.2018.9375 es_ES
dc.description.references Liu, G., Sun, H., Liu, C., Bai, L., Yang, P., Jiang, W., Wang, W., Gao, S. 2020. Effects of different roughage materials on slaughter performance and muscle quality of Minxinan black rabbits. Chinese J. Anim. Nutr.,32: 4277-4284. es_ES
dc.description.references Liu, G., Wang, Y., Zhao, G., Bai, L., Li, M., Sun, H., Xu, Y. 2021. Effects of different ratios of ginger straws replacing peanut seedlings in diets on growth performance, slaughter performance and meat quality of Laiwu black rabbits. Chinese J. Anim Nutr., 33: 1633-1642. es_ES
dc.description.references Ma, J., Guo, D., Tian, H., Li, J., Yang, G. 2010. Evaluation of apparent digestibility and digestibility of main nutrients of peanut straws in meat rabbits. Feed Industry, 31: 62-64. es_ES
dc.description.references Margüenda, I., Nicodemus, N., Vadillo, S., Sevilla, L., García-Rebollar P., Villarroel, M., Romero, C., Carabaño, R. 2012. Effect of dietary type and level of fibre on rabbit carcass yield and its microbiological characteristics. Livest. Sci., 145: 7-12. https://doi.org/10.1016/j.livsci.2011.12.012 es_ES
dc.description.references Mukherjee, R., Chakraborty, R., Dutta, A. 2016. Role of fermentation in improving nutritional quality of soybean meal-a review. Asian-Austral. J. Anim. Sci., 29: 1523-1529. https://doi.org/10.5713/ajas.15.0627 es_ES
dc.description.references Nath, S.K., Das, S., Kar, J., Afrin, K., Kumar, A., Dash, A., Akter, S. 2016. Topographical and biometrical anatomy of the digestive tract of White New Zealand Rabbit (Oryctolagus cuniculus). J. Adv. Vet. Anim., 3: 145-151. https://doi.org/10.5455/javar.2016.c144 es_ES
dc.description.references Panda, A., Niranjan, M., Reddy, B., Sharma, R. 2006. Influence of dietary energy on growth, immune competence and carcass characteristics of coloured broiler chickens. Anim. Nutr. Feed Tech., 6: 115-121. es_ES
dc.description.references Romero, C., Nicodemus, N., Rodríguez, J.D., García, A.I., de Blas C. 2011. Effect of type of grinding of barley and dehydrated alfalfa on performance, digestion, and crude mucin ileal concentration in growing rabbits. J. Anim. Sci., 89: 2472-2484. https://doi.org/10.2527/jas.2010-3226 es_ES
dc.description.references Shang, S.M., Wu, Z.Y., Liu, G.Y., Sun, C.R., Ma, M.W., LI, F.C. 2017. Effect of substituting guinea grass with soybean hulls on production performance and digestion traits in fattening rabbits. World Rabbit Sci., 25: 241-249. https://doi.org/10.4995/wrs.2017.6654 es_ES
dc.description.references Shi C., Zhang Y., Lu Z., Wang Y. (2017). Solid-state fermentation of corn soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol., 8: 50. https://doi.org/10.1186/s40104-017-0184-2 es_ES
dc.description.references Van Soest P.J., Robertson, J.B., Lewis, B.A. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 es_ES
dc.description.references Vazquez, Y., Valdivie, M., Berrios, I., Sosa, E. 2018. Morphometric analysis of the gastrointestinal tract of rabbits fed mulberry forage and sugarcane stems. Cuban J. Agric. Sci., 52: 389-394. es_ES
dc.description.references Wang C., Lin C., Su W., Zhang Y., Wang F., Wang Y., Shi C., Lu Z. 2018a. Effects of supplementing sow diets with fermented corn and soybean meal mixed feed during lactation on the performance of sows and progeny. J. Anim. Sci., 96: 206-214. https://doi.org/10.1093/jas/skx019 es_ES
dc.description.references Wang C., Su W., Yu Z., Hao L, Wang Y. 2018b. Solidstate fermentation of distilled dried grain with solubles with probiotics for degrading lignocellulose and upgrading nutrient utilization. Amb. Express., 8: 188. https://doi.org/10.1186/s13568-018-0715-z es_ES
dc.description.references Weatherburn, MW. 1967. Phenol hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971-974. https://doi.org/10.1021/ac60252a045 es_ES
dc.description.references Wlazło, Ł., Kowalska, D., Bielanski, P., Chmielowiec-Korzeniowska A., Ossowski, M., Łukaszewicz, M., Czech, A., Nowakowicz-Dębek B. 2021. Effect of fermented rapeseed meal on the gastrointestinal microbiota and immune status of rabbit (Oryctolagus cuniculus). Animal, 11: 716. https://doi.org/10.3390/ani11030716 es_ES
dc.description.references Wu, S., Guo, D. 2019. Effect of adding peanut seedling to diet on intestinal flora of rabbit. Chinese J. Anim Nutr., 31: 2735-2744. es_ES
dc.description.references Wu, S.J., Liu, L., Zhu, Y.L., Wang, C.Y., Li, F.C. 2017. Effect of varying the energy density on growth performance, meat quality, caecum fermentation and microbiota of growing Rex rabbits. Anim. Prod. Sci., 57: 14933. https://doi.org/10.1071/AN14933 es_ES
dc.description.references Xiccato, G., Trocino, A., Sartori, A., Queaque, P.I. 2002. Effect of dietary starch level and source on performance, caecal fermentation and meat quality in growing rabbits. World Rabbit Sci., 10: 147-157. https://doi.org/10.4995/wrs.2002.487 es_ES
dc.description.references Xiccato, G., Trocino, A., Carraro, L., Fragkiadakis, M., Majolini, D. 2008. Digestible fibre to starch ratio and antibiotic treatment time in growing rabbits affected by epizootic rabbit enteropathy. In Proc.: 9th World Rabbit Congress, 10-13 June, Verona, Italy. 847-851. es_ES
dc.description.references Yu, B., Chiou, P.W.S. 1996. Effects of crude fibre level in the diet on the intestinal morphology of growing rabbits. Lab Anim., 30: 143-148. https://doi.org/10.1258/002367796780865826 es_ES
dc.description.references Zhang, Y., Shi, C., Wang, C., Lu, Z., Wang, F., Feng, J., Wang, Y. 2018. Effect of soybean meal fermented with Bacillus subtilis BS12 on growth performance and small intestinal immune status of piglets. Food Agr. Immunol., 29: 133-146. https://doi.org/10.1080/09540105.2017.1360258 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem