- -

Changes of oxidant-antioxidant parameters in small intestines from rabbits infected with E. intestinalis and E. magna

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Changes of oxidant-antioxidant parameters in small intestines from rabbits infected with E. intestinalis and E. magna

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhou, Yun Xiao es_ES
dc.contributor.author Yuan, Xu es_ES
dc.contributor.author Hu, Xiao Fen es_ES
dc.contributor.author Yang, Shan Shan es_ES
dc.contributor.author Zhong, Sheng Wei es_ES
dc.contributor.author Yang, Ting Yu es_ES
dc.contributor.author Zhao, Guo Tong es_ES
dc.contributor.author Jiang, Yi Jie es_ES
dc.contributor.author Li, Yong es_ES
dc.date.accessioned 2023-01-11T11:14:07Z
dc.date.available 2023-01-11T11:14:07Z
dc.date.issued 2022-12-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/191227
dc.description.abstract [EN] Rabbit coccidiosis is a very serious disease caused by protozoan parasites of the genus Eimeria, which increases the production rate of free radicals, especially reactive oxygen species. When the generation of free radicals exceeds the scavenging capacity of the body s antioxidant system, the oxidant-antioxidant balance is broken, resulting in oxidative stress. This study was designed to investigate the effect on the oxidant-antioxidant status of rabbits infected with E. intestinalis and E. magna. To this end, eighteen 30-d-old weaned rabbits were randomly allocated into three groups as follows: the E. intestinalis infection group with 3×103 sporulated oocysts of E. intestinalis, the E. magna infection group with 20×103 sporulated oocysts of E. magna, and the uninfected control group. We measured the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) and the contents of malondialdehyde (MDA) in rabbits small intestinal tissues (duodenum, jejunum and ileum) of the three groupson day 8. The results showed that CAT activity and MDA levels significantly increased, while the activities of SOD, GSH-Px and T-AOC decreased after E. intestinalis and E. magna infection. Besides, the jejunum and ileum were particularly damaged in the rabbits. It is concluded that the pathological oxidative stress occurs during the E. intestinalis and E. magna infection process and the body s oxidant-antioxidant balance is disrupted. es_ES
dc.description.sponsorship This experiment was supported by the National Natural Science Foundation Project of China (nos. 31960688 and 31360592) and the Natural Science Foundation Project of Jiangxi Province (no. 20181BAB204016). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject E. magna es_ES
dc.subject E. intestinalis es_ES
dc.subject Oxidative stress es_ES
dc.subject Oxidant-antioxidant balance es_ES
dc.subject Rabbit es_ES
dc.title Changes of oxidant-antioxidant parameters in small intestines from rabbits infected with E. intestinalis and E. magna es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.17395
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31960688 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31360592 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Jiangxi Province//20181BAB204016 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Zhou, YX.; Yuan, X.; Hu, XF.; Yang, SS.; Zhong, SW.; Yang, TY.; Zhao, GT.... (2022). Changes of oxidant-antioxidant parameters in small intestines from rabbits infected with E. intestinalis and E. magna. World Rabbit Science. 30(4):287-293. https://doi.org/10.4995/wrs.2022.17395 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.17395 es_ES
dc.description.upvformatpinicio 287 es_ES
dc.description.upvformatpfin 293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\17395 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Natural Science Foundation of Jiangxi Province es_ES
dc.description.references Abdel-Haleem H.M., Aboelhadid S.M., Sakran T., El-Shahawy G., El-Fayoumi H., Al-Quraishy S., Abdel-Baki A.A.S.2017. Gene expression, oxidative stress and apoptoticchanges in rabbit ileum experimentally infected withEimeria intestinalis. Folia Parasitol. (Praha)., 64:1-7. https://doi.org/10.14411/fp.2017.012 es_ES
dc.description.references Allen P.C. 1997. Production of free radical species during Eimeria maxima infections in chickens. Poult. Sci., 76:814-821. https://doi.org/10.1093/ps/76.6.814 es_ES
dc.description.references Bahrami S., Shahriari A., Tavalla M., Azadmanesh S., Hamidinejat H. 2016. Blood levels of oxidant/antioxidant parameters in rats infected with Toxoplasma gondii. Oxid. Med. Cell. Longev., 2016. https://doi.org/10.1155/2016/8045969 es_ES
dc.description.references Balicka-Ramisz A., Laurans, Pohorecki K., Batko M., Ramisz A.2021. Short communication: Prevalence of Eimeria spp.infection in domestic rabbits of Polish farms. World Rabbit Sci., 28:181-185. https://doi.org/10.4995/wrs.2020.10758 es_ES
dc.description.references Burton G.J., Jauniaux E. 2011. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol., 25: 287-299. https://doi.org/10.1016/j.bpobgyn.2010.10.016 es_ES
dc.description.references Çam Y., Atasever A., Eraslan G., Kibar M., Atalay Ö., Beyaz L., Inci A., Liman B.C. 2008. Eimeria stiedae: Experimental infection in rabbits and the effect of treatment with toltrazuril and ivermectin. Exp. Parasitol., 119: 164-172. https://doi.org/10.1016/j.exppara.2008.01.005 es_ES
dc.description.references Cecerska-Heryć E., Surowska O., Heryć R., Serwin N., Napiontek-Balińska S., Dołęgowska B. 2021. Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients - A review. Clin. Biochem., 93: 1-8. https://doi.org/10.1016/j.clinbiochem.2021.03.008 es_ES
dc.description.references Coudert P., Licois D., Provôt F., Drouet-Viard F. 1993. Eimeria sp. from the rabbit (Oryctolagus cuniculus): Pathogenicity and immunogenicity of Eimeria intestinalis. Parasitol. Res., 79: 186-190. https://doi.org/10.1007/BF00931890 es_ES
dc.description.references Dalle Zotte A., Szendrő Z. 2011. The role of rabbit meat as functional food. Meat Sci., 88: 319-331. https://doi.org/10.1016/j.meatsci.2011.02.017 es_ES
dc.description.references Dalloul R.A., Lillehoj H.S. 2005. Recent advances in immunomodulation and vaccination strategies againstcoccidiosis. Avian Dis., 49: 1-8. https://doi.org/10.1637/7306-11150R es_ES
dc.description.references Dinstel R.R., Cascio J., Koukel S. 2013. The antioxidant level of Alaska’s wild berries: High, higher and highest. Int. J. Circumpolar Health, 72: 1-7. https://doi.org/10.3402/ijch.v72i0.21188 es_ES
dc.description.references Dkhil M.A., Abdel-Maksoud M.A., Al-Quraishy S., Abdel-Baki A.A.S., Wunderlich F. 2012. Gene expression in rabbit appendices infected with Eimeria coecicola. Vet. Parasitol., 186: 222-228. https://doi.org/10.1016/j.vetpar.2011.11.031 es_ES
dc.description.references Eckert J., Taylor M., Licois D., Coudret P., Catchpole J., Bucklar H. 1995. Identification of Eimeria and Isospora species and strains: Morphological and biological characteristics. In: Eckert J., Braun R., Shirley M.W., et al. (eds) Biotechnology. Guidelines on techniques in coccidioisis research office for official publications of the European communities, Luxembourg, 103-119. es_ES
dc.description.references Fattman C.L., Schaefer L.M., Oury T.D. 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med., 35: 236-256. https://doi.org/10.1016/S0891-5849(03)00275-2 es_ES
dc.description.references García-Rubio V.G., Bautista-Gómez L.G., Martínez-Castañeda J.S., Romero-Núñez C. 2017. Multicausal etiology of the enteric syndrome in rabbits from Mexico. Rev. Argent. Microbiol., 49: 132-138. https://doi.org/10.1016/j.ram.2017.03.001 es_ES
dc.description.references Gaschler M.M., Stockwell B.R. 2017. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 482: 419-425. https://doi.org/10.1016/j.bbrc.2016.10.086 es_ES
dc.description.references Georgieva N.V., Koinarski V., Gadjeva V. 2006. Antioxidant status during the course of Eimeria tenella infection in broiler chickens. Vet. J., 172: 488-492. https://doi.org/10.1016/j.tvjl.2005.07.016 es_ES
dc.description.references Giannenas I., Papadopoulos E., Tsalie E., Triantafillou E., Henikl S., Teichmann K., Tontis D. 2012. Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Vet. Parasitol., 188: 31-40. https://doi.org/10.1016/j.vetpar.2012.02.017 es_ES
dc.description.references Hamid P.H., Prastowo S., Kristianingrum Y.P. 2019. Intestinal and hepatic coccidiosis among rabbits in Yogyakarta, Indonesia. Vet. World, 12: 1256-1260. https://doi.org/10.14202/vetworld.2019.1256-1260 es_ES
dc.description.references He L., He T., Farrar S., Ji L., Liu T., Ma X. 2017. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 44: 532-553. https://doi.org/10.1159/000485089 es_ES
dc.description.references Hirrlinger J., Hamprecht B., Dringen R. 1999. Application and modulation of a permanent hydrogen peroxide-induced oxidative stress to cultured astroglial cells. Brain Res. Protoc., 4: 223-229. https://doi.org/10.1016/S1385-299X(99)00023-9 es_ES
dc.description.references Hussain A., Jinke T., Jianjun W., Muhammad Ammar K., Yuanxiao W., Lili Z., Tian W. 2012. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities andoxidative stability of chicken breast meat. J. Agric. Food Chem., 60: 7111-7120. https://doi.org/10.1021/jf3017207 es_ES
dc.description.references Jang S.I., Lillehoj H.S., Lee S.H., Lee K.W., Park M.S., BauchanG.R., Lillehoj E.P., Bertrand F., Dupuis L., Deville S. 2010. Immunoenhancing effects of MontanideTM ISA oil-based adjuvants on recombinant coccidia antigen vaccination against Eimeria acervulina infection. Vet. Parasitol., 172: 221-228. https://doi.org/10.1016/j.vetpar.2010.04.042 es_ES
dc.description.references Jing F., Yin G., Liu X., Suo X., Qin Y. 2012. Large-scale survey of the prevalence of Eimeria infections in domestic rabbits in China. Parasitol. Res., 110: 1495-1500. https://doi.org/10.1007/s00436-011-2653-4 es_ES
dc.description.references Li C., Tao G., Gu X., Cui Y., Wang Y., Suo J., Lv Y., Yu F., Mamoun C. Ben, Suo X., Liu X. 2019. Selection and identification of a precocious line of Eimeria intestinalis with enlarged oocysts and deletion of one generation of schizogony. Parasitol. Res., 118: 969-976. https://doi.org/10.1007/s00436-018-06199-1 es_ES
dc.description.references Li M.H., Ooi H.K. 2009. Fecal occult blood manifestation of intestinal Eimeria spp. infection in rabbit. Vet. Parasitol., 161: 327-329. https://doi.org/10.1016/j.vetpar.2009.01.009 es_ES
dc.description.references Licois D., Coudert P., Boivin M., Drouet-Viard F., Provôt F. 1990. Selection and characterization of a precocious line of Eimeria intestinalis, an intestinal rabbit coccidium. Parasitol. Res., 76: 192-198. https://doi.org/10.1007/BF00930814 es_ES
dc.description.references Licois D., Coudert P., Drouet-Viard F., Boivin M. 1995.Eimeria magna: Pathogenicity, immunogenicity and selection of a precocious line. Vet. Parasitol., 60: 27-35. https://doi.org/10.1016/0304-4017(94)00768-8 es_ES
dc.description.references Lin X., Bai D., Wei Z., Zhang Y., Huang Y., Deng H., Huang X.2019. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 14: 1-13. https://doi.org/10.1371/journal.pone.0216711 es_ES
dc.description.references Matés J.M., Pérez-Gómez C., De Castro I.N. 1999. Antioxidant enzymes and human diseases. Clin. Biochem., 32: 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2 es_ES
dc.description.references Mengistu B.M., Bitsue H.K., Huang K. 2021. The effects of selenium-enriched probiotics on growth performance, oocysts shedding, intestinal cecal lesion scores, antioxidant capacity, and mRNA gene expression in chickens infectedwith Eimeria tenella. Biol. Trace Elem. Res., 199: 278-291. https://doi.org/10.1007/s12011-020-02118-7 es_ES
dc.description.references Niilo L. 1967. Acquired resistance to reinfection of rabbits with Eimeria magna. Can. Vet. J., 8: 201-208. es_ES
dc.description.references Pakandl M., Licois D., Coudert P. 2001. Electron microscopic study on sporocysts and sporozoites of parental strains and precocious lines of rabbit coccidia Eimeria intestinalis, E. media and E. magna. Parasitol. Res., 87: 63-66. https://doi.org/10.1007/s004360000303 es_ES
dc.description.references Pakandl M., Sewald B., Drouet-Viard F. 2006. Invasion of the intestinal tract by sporozoites of Eimeria coecicola and Eimeria intestinalis in naive and immune rabbits. Parasitol. Res., 98: 310-316. https://doi.org/10.1007/s00436-005-0071-1 es_ES
dc.description.references Romero F.J., Bosch-Morell F., Romero M.J., Jareño E.J., Romero B., Marín N., Romá J. 1998. Lipid peroxidation products and antioxidants in human disease. Environ. Health Perspect., 106: 1229-1234. https://doi.org/10.1289/ehp.98106s51229 es_ES
dc.description.references Saita E., Kondo K., Momiyama Y. 2014. Anti-inflammatory diet for atherosclerosis and coronary artery disease: Antioxidant foods. Clin. Med. Insights Cardiol., 8: 61-65. https://doi.org/10.4137/CMC.S17071 es_ES
dc.description.references Sasani M., Nabavi R., Hajinezhad M., Hasanein P. 2018. Oxidative stress and hepatic injury induced in mice fed a Sarcocystis hirsuta cyst extract. J. Vet. Sci., 19: 500. https://doi.org/10.4142/jvs.2018.19.4.500 es_ES
dc.description.references Shi L., X u Y., Mao C., Wang Z., Guo S., Jin X., Yan S., Shi B.2020. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs. Int. J. Biometeorol., 64: 2093-2104. https://doi.org/10.1007/s00484-020-02000-0 es_ES
dc.description.references Shi T., Tao G., Bao G., Suo J., Hao L., F u Y., Suo X. 2016. Stabletransfection of Eimeria intestinalis and investigation of its life cycle, reproduction and immunogenicity. Front. Microbiol., 7: 1-8. https://doi.org/10.3389/fmicb.2016.00807 es_ES
dc.description.references Shirley M.W., Smith A.L., Tomley F.M. 2005. The biology of avian Eimeria with an emphasis on their control by vaccination. Adv. Parasitol., 60: 285-330. https://doi.org/10.1016/S0065-308X(05)60005-X es_ES
dc.description.references Tao G., Wang Y., Li C., Gu X., Cui P., Fang S., Suo X., Liu X. 2017. High pathogenicity and strong immunogenicity of a Chinese isolate of Eimeria magna Pérard, 1925. Parasitol. Int., 66: 207-209. https://doi.org/10.1016/j.parint.2017.01.014 es_ES
dc.description.references Wang X.H., Yu H.L., Zou W.B., Mi C.H., Dai G.J., Zhang T., Zhang G.X., Xie K.Z., Wang J.Y.2020. Study of the relationship between polymorphisms in the Il-8 gene promoter region and coccidiosis resistance index in jinghai yellow chickens. Genes (Basel)., 11: 1-13. https://doi.org/10.3390/genes11050476 es_ES
dc.description.references Xiao M., Mi Y., Liu L., Lv C., Zeng W., Zhang C., Li J. 2018. Taurine regulates mucosal barrier function to alleviate lipopolysaccharide-induced duodenal inflammation in chicken. Amino Acids, 50: 1637-1646. https://doi.org/10.1007/s00726-018-2631-6 es_ES
dc.description.references Yuan X., Liu J., Wang F., Hu X.F., Wen F., Tang X.E., Yang S.S., Zhong S.W., Zhou Z.H., Li Y. 2021. Pathological changes and antigen localization in the small intestine of rabbits infected with Eimeria magna. World Rabbit Sci., 29: 183-192. https://doi.org/10.4995/wrs.2021.15254 es_ES
dc.description.references Zhou M., Xu W., Wang J., Yan J., Shi Y., Zhang C., Ge W., Wu J., Du P., Chen Y. 2018. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine, 35: 345-360. https://doi.org/10.1016/j.ebiom.2018.0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem