- -

Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Itodo, Joy Iyojo es_ES
dc.contributor.author Ayo, Joseph Olusegun es_ES
dc.contributor.author Rekwot, Ibrahim Peter es_ES
dc.contributor.author Aluwong, Tagang es_ES
dc.contributor.author Allam, Lushaikyaa es_ES
dc.contributor.author Ibrahim, Shettima es_ES
dc.date.accessioned 2023-01-11T11:23:42Z
dc.date.available 2023-01-11T11:23:42Z
dc.date.issued 2022-12-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/191229
dc.description.abstract [EN] The study investigated the comparative influence of different extraction solvents on spermiogram, hormonal profiles and antioxidant activities in rabbit bucks. Adult New Zealand White rabbit bucks (n=18), with average live weight of 1.2±0.03 kg and aged 10-18 mo were fed ad libitum on a commercial diet. They were administered five different Azanza garckeana (AG) fruit pulp extracts at 500 mg/kg via oral gavage, comprising control group (Con), crude (AG Cr), methanol (AG M), n-hexane (AG H), ethyl acetate (AG E) and aqueous (AG AQ) for four weeks. The extracts improved the spermiogram in rabbit bucks administered methanol (AG M) and the reaction time was significantly (P<0.05) lower in AG E group when compared to other groups. The ejaculate volume, sperm motility, pH and sperm concentration were significantly (P<0.05) higher in the AG M group when compared to the other groups. There was a significant (P<0.05) increase in concentrations of blood testosterone, follicle-stimulating hormone and luteinising hormone in methanol extract group (AG M). While the glutathione and malondialdehyde concentrations were (P<0.05) lower, catalase and superoxide dismutase activities were significantly (P<0.05) higher in the groups administered methanol extract (AG M). It was concluded that AG M extracts of AG pulp elicited the best response in spermiogram, hormonal concentrations and antioxidant activities in New Zealand White rabbit bucks. Its use as the extraction solvent is recommended. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Antioxidants es_ES
dc.subject Azanza garckeana es_ES
dc.subject Hormonal Profiles es_ES
dc.subject Rabbit Bucks es_ES
dc.subject Spermiogram es_ES
dc.title Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2022.17256
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Itodo, JI.; Ayo, JO.; Rekwot, IP.; Aluwong, T.; Allam, L.; Ibrahim, S. (2022). Comparative evaluation of solvent extracts of Azanza garckeana fruit pulp on hormonal profiles, spermiogram and antioxidant activities in rabbit bucks. World Rabbit Science. 30(4):309-326. https://doi.org/10.4995/wrs.2022.17256 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2022.17256 es_ES
dc.description.upvformatpinicio 309 es_ES
dc.description.upvformatpfin 326 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\17256 es_ES
dc.description.references Abo-elsouda M.A., Hashema N.A., Nour El-Dina A.N.M., Kamel K.I., Hassana G.A. 2019. Soybean isoflavone affects in rabbits: Effects on metabolism, antioxidant capacity, hormonal balance and reproductive performance. Anim. Reprod. Sci., 203: 52-60. https://doi.org/10.1016/j.anireprosci.2019.02.007 es_ES
dc.description.references Adienbo O.M., Nwafor A., Ogbomade R.S. 2013. Effect of hydromethanolic extract of Xylopia aethiopica on sexual behavior in es_ES
dc.description.references male Wistar rats. Inter. J. Adv. Biol. Biomed. Res., 1: 1078-1085 es_ES
dc.description.references Ahangarpour A., Heidari H., Oroojan A.A., Mirzavandi F., Esfehani N.K., Mohammadi D.Z. 2017. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root›s hydroalcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Avicenna J. Phytomed., 7: 169-179. es_ES
dc.description.references Alvarez J.G., Storey B.T. 1995. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev., 42: 334-46. https://doi.org/10.1002/mrd.1080420311 es_ES
dc.description.references Agarwal A., Saleh R.A., Bedaiwy M.A. 2003. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril., 79: 829-43. es_ES
dc.description.references Agarwal A., Prabakaran A.A. 2005. Oxidative and antioxidants in male infertility: a different balance. Iran J. Reprod. Med., 3: 1-8. es_ES
dc.description.references Association of Official Analytical Chemists (AOAC). 2012. Official Methods of Analysis 13th edn, Washington D.C., USA. es_ES
dc.description.references Atmani D., Nassima C., Dina A. Meriem B. Nadjet D. Hania B. 2009. Flavonoids in human health: from structure to biological activity. Food Sci., 5: 225-237. https://doi.org/10.2174/157340109790218049 es_ES
dc.description.references Attia Y.A., Kamel K.I. 2012. Semen quality, testosterone, seminal plasma biochemical and antioxidant profiles of rabbit bucks fed diets supplemented with different concentrations of soybean lecithin. Animal, 6: 824-833. https://doi.org/10.1017/S1751731111002229 es_ES
dc.description.references Aybek H., Aybek Z., Rota S., Sen N., Akbulut M. 2008. The effect of diabetes mellitus, age and vitamin on testicular oxidative stress. Fertil. Steril., 90: 755-760. https://doi.org/10.1016/j.fertnstert.2007.01.101 es_ES
dc.description.references Azwanida N.N. 2015. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Med. Aromatic Plants, 4: 243-151. es_ES
dc.description.references Baumber J., Ball B.A., Gravance C.G., Medina V., Davies-Morel M.C. 2000. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J. Androl., 21: 895-902. es_ES
dc.description.references Beers Jr. R., Sizer I., 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195: 133-140. https://doi.org/10.1016/S0021-9258(19)50881-X es_ES
dc.description.references Bisby R.H., Brooke R., Navaratnam S. 2008. Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay. Food Chem., 108: 1002-1007. https://doi.org/10.1016/j.foodchem.2007.12.012 es_ES
dc.description.references Boonsorn T., Kongbuntad W., Nakkong N.A., Aengwanich W. 2010. Effects of catechin addition to extender on sperm quality and lipid peroxidation in boar semen. Amer-Eurasian J. Agric. Environ Sci., 7: 283-288. es_ES
dc.description.references Carlsen M.H., Halvorsen B.L., Holte K., Bohn S.K., Dragland S., Sampson L., Willey L., Senoo H., Umezono Y., Sanada C. 2010. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J., 9: 3-18. https://doi.org/10.1186/1475-2891-9-3 es_ES
dc.description.references Chang F.R., Li P.S., Huang R., Liu L. 2018. Bioactive phenolic components from the twigs of Atalantia buxifolia. J. Nat. Prod., 81: 1534-1539. https://doi.org/10.1021/acs.jnatprod.7b00938 es_ES
dc.description.references Capasso A. 2013. Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules, 18: 690-700. https://doi.org/10.3390/molecules18010690 es_ES
dc.description.references Dikko Y.J., Khan M.E., Tor-Anyiin T.A., Anyam J.V., Linus U.A. 2016. In vitro antimicrobial activity of fruit pulp extracts of Azanza garckeana (F. Hoffm.) Exell & Hillc. and isolation of one of its active principles, Betulinic Acid. British J. Pharm. Res., 14: 1-10. https://doi.org/10.9734/BJPR/2016/30152 es_ES
dc.description.references Dobrzyñska M.M., Baumgartner A., Anderson D. 2004. Antioxidants modulate thyroid hormone- and noradrenalineinduced DNA damage in human sperm. Mutagenesis, 19: 325-330. https://doi.org/10.1093/mutage/geh037 es_ES
dc.description.references Edward Y.B., Edward N.B., Tyeng T.D. 2021. A chemical overview of Azanza garckeana. Biol. Med. Nat. Prod. Chem., 9: 91-95. https://doi.org/10.14421/biomedich.2020.92.91-95 es_ES
dc.description.references Enechi O.C., Okagu I.U., Amah C.C., Ononiwu P.C., Igwe J.F., Onyekaozulu C.R. 2021. Flavonoid-rich extract of buchholzia coriacea English seeds reverses Plasmodium berghei-modified haematological and biochemical status in mice. Sci. Afr., 12: 748-756. https://doi.org/10.1016/j.sciaf.2021.e00748 es_ES
dc.description.references Ellman G.L. 1959. Tissue sulphydryl group. Arch. Biochem. Biophy., 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6 es_ES
dc.description.references Fridovich I. 1989. Superoxide dismutases. An adaptation to a paramagnetic gas. J. Biol. Chem., 264: 7761-7764. https://doi.org/10.1016/S0021-9258(18)83102-7 es_ES
dc.description.references Ghosh D., Das U.B., Mallick M., Debnath J. 2002. Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: A correlative study with testicular oxidative stress. Drug Chem. Toxicol., 25: 281-292. https://doi.org/10.1081/DCT-120005891 es_ES
dc.description.references Glew R.S., Vanderjagt D.J., Chuang L.T., Huang Y.S., Millson M., Glew, R.H. 2005. Nutrient content of four edible wild plants from West Africa. Plant Food Human Nutr., 60: 187-193. https://doi.org/10.1007/s11130-005-8616-0 es_ES
dc.description.references Gupta V.K., Sharma S.K. 2006. Plants as natural antioxidants. Nat. Prod. Rad., 5: 326-334. es_ES
dc.description.references Hasler C.M., Blumberg J.B. 1999. Introduction. J. Nutr., 129: 756-757. https://doi.org/10.1093/jn/129.3.756S es_ES
dc.description.references Hamden K., Carreau S., Jamoussi K., Ayadi F., Garmazi F., Mezgenni N., Elfeki A. 2008. Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem., 64: 231-239. https://doi.org/10.1007/BF03216108 es_ES
dc.description.references Iloki-Assanga S.B., Lewis-Luján L.M., Lara-Espinoza C.L., Gil-Salido A.A., Fernández-Angulo D., Rubio-Pino J.L., Haines D.D. 2015. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras and Phoradendron californicum. Natl. Lib. Med., 1: 396-405. https://doi.org/10.1186/s13104-015-1388-1 es_ES
dc.description.references Itodo J.I., Rekwot P.I., Aluwong T., Allam L., Ayo J.O. 2022. Effects of Different Extracts of Azanza garckeana fruit pulp on Haematological and Biochemical Parameters of New Zealand White (NZW) Rabbit bucks. Comp. Clinc. Path., 1-11. https://doi.org/10.4314/bajopas.v9i2.38 es_ES
dc.description.references Jacob C., Shehu Z., Danbature W.L., Karu E. 2016 Proximate analysis of the fruit Azanza garckeana (“goron tula”) Bayero J. Pure Appl. Sci., 9: 221-224. https://doi.org/10.4314/bajopas.v9i2.38 es_ES
dc.description.references Kaur P., Bansal M.P. 2003. Effect of oxidative stress on the spermatogenic process and hsp70 expression in mice testes. India J. Biochem. Biophys., 40: 246-251. es_ES
dc.description.references Lawal B., Ossai P.C., Shittu O.K., Abubakar A.N. 2014. Evaluation of phytochemicals, proximate, minerals anti-nutritional compositions of yam peel, maize chaff, bean coat. Intern. J. Applied Biol. Res., 6: 1-17. es_ES
dc.description.references Lorke D. 1983. A new approach to practical acute toxicity testing, Arch. Toxicol., 54: 275-287. https://doi.org/10.1007/BF01234480 es_ES
dc.description.references Maroyi A. 2011. The gathering and consumption of wild edible plants in Nhema communal area, Midlands Province, Zimbabwe. Ecol. Food Nut., 50: 506-525. https://doi.org/10.1080/03670244.2011.620879 es_ES
dc.description.references Maroyi A. 2012. Local plant use and traditional conservation practices in Nhema communal area, Zimbabwe. International J. African Renaissance Studies Multi-Inter. Transdiscipl., 7: 109-128. https://doi.org/10.1080/18186874.2012.699934 es_ES
dc.description.references Maroyi A., Cheikh-Youssef A. 2017. Traditional knowledge of wild edible fruits in southern Africa: A comparative use patterns in Namibia and Zimbabwe. Indian J. Trad. Knowl., 16: 385-392. es_ES
dc.description.references Middleton E., Kandaswami C., Theoharides T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52: 673-751. es_ES
dc.description.references Meli R., Monnolo A., Chiara A.C., Pirozzi C., Ferrante M.C. 2020. Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants, 9: 405-429. https://doi.org/10.3390/antiox9050405 es_ES
dc.description.references Nantia E.A., Moundipa P.F., Monsees T.K., Carreau S. 2009. Medicinal plants as potential male anti-infertility agents: a review. Androl., 19: 148-158. https://doi.org/10.1007/s12610-009-0030-2 es_ES
dc.description.references Ngo T.V., Scarlett C.J., Bowyer M.C., Ngo P.D., Vuong Q.V. 2017. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis. J. Food Quality, 29: 34-49. https://doi.org/10.1155/2017/9305047 es_ES
dc.description.references Nguyen H.C., Lin K.H., Huang M.Y. 2018. Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca., 46: 457-465. https://doi.org/10.15835/nbha46211038 es_ES
dc.description.references Nkafamiya I.I., Ardo B.P., Osemeahon S.A., Akinterinwa A. 2015. Evaluation of nutritional, non-nutritional, elemental content and amino acid profile of Azanza garckeana (goron tula). British J. Appl. Sc. Tech., 12: 1-10. https://doi.org/10.9734/BJAST/2016/19811 es_ES
dc.description.references Ochokwu I.J., Dasuki A., Oshoke J.O. 2015. Azanza garckeana (goron tula) as an edible indigenous fruit in north eastern part of Nigeria. J. Biol. Agric. Health-care, 5: 26-31. es_ES
dc.description.references Oda S.S., Waheeb R.S. 2017. Ginger attenuated Di (N-butyl) phthalate-induced reproductive toxicity in pubertal male rabbits. World Rabbit Sci., 25: 387-398. https://doi.org/10.4995/wrs.2017.7466 es_ES
dc.description.references Ogbu C.P., Okagu I.U., Nwodo O.F. 2020. Antiinflammatory activities of ethanol extract of Combretum zenkeri leaves. Comp. Clin. Path., 29: 397-409. https://doi.org/10.1007/s00580-019-03072-0 es_ES
dc.description.references Pauzenga U. 1985. Feeding parent stock. Zootech. Inter., 22-25. Purdy P.H., Ericsson S.A., Dodsona R.E., Sternes K.L., Garner D.L. 2004. Effects of the flavonoids, silibinin and catechin, on the motility of extended cooled caprine sperm. Small Rum. Res., 55: 239-243. https://doi.org/10.1016/j.smallrumres.2004.02.005 es_ES
dc.description.references Rajagopalan R., Aruna K., Penumathsa S., Rajasekharan K., Menon, V. 2004. Comparative effects of curcumin and an analogue of curcumin on alcohol and PUFA induced oxidative stress. J. Pharm. Pharm. Sci., 7: 273-283. es_ES
dc.description.references Rekwot P.I., Oyedipe E.O., Dawuda P.M, Sekoni V.O. 1997. Age and hourly related changes of the serum testosterone and spermiogram of prepubertal bulls fed two levels of nutrition. Vet. J., 153: 341-347. https://doi.org/10.1016/S1090-0233(97)80068-8 es_ES
dc.description.references Ryszard A. 2007. Tannins: the new natural antioxidants? Eur. J. Lipid Sci. Tech., 109: 549-551. https://doi.org/10.1002/ejlt.200700145 es_ES
dc.description.references Saleh S.Y., Tony M., Sawiress F., Hassannin A. 2015. Protective role of some feed additives against in Dizocelpine induced oxidative stress in testes of rabbit bucks. J. Agric. Sci., 7: 36-46. https://doi.org/10.5539/jas.v7n10p239 es_ES
dc.description.references Saxena G., Saxena J., Nema R., Singh D., Gupta A. 2013. Phytochemistry of medicinal plants. J. Pharmacol. Phytochem., 2: 34-46. es_ES
dc.description.references Shinkut M., Rekwot P.I., Aluwong T., Bugau J.S., Samuel F.U., Bawa E.K. 2020. Effects of melatonin and Allium sativum (garlic) on dibutyl phthalate induced oxidative stress on serum hormones and lipid profile of rabbit bucks. Alex. J. Vet. Sci., 66: 1-10. https://doi.org/10.5455/ajvs.70467 es_ES
dc.description.references Singh A.K., Bharati R.C., Manibhushan N.C., Pedpati A. 2013. An assessment of faba bean (Vicia faba) current status and future prospect. Afr. J. Agric. Res., 8: 6634-6641. es_ES
dc.description.references Smith J.T., Mayer D.T. 1955. Evaluation of sperm concentration by the haemocytometer method. Comparison of four counting fluids. Fertil. Steril., 6: 271-275. https://doi.org/10.1016/S0015-0282(16)31987-2 es_ES
dc.description.references Stern K. 1937. On the absorption spectrum of catalase. J. Biol. Chem., 121561-121572. es_ES
dc.description.references Subasinghe S.K., Ogbuehi K.C., Mitchell L. 2021. Animal model with structural similarity to human corneal collagen fibrillar arrangement. Anat. Sci. Inter., 96: 286-293. https://doi.org/10.1007/s12565-020-00590-8 es_ES
dc.description.references Tijjani I.M., Bello I., Aliyu A., Olunnshe T., Logun Z. 2007. Phytochemical and antibacterial study of root extract Cochlospermum tinctoricm. Am. Res. J. Med. Plant., 3: 16-22. https://doi.org/10.3923/rjmp.2009.16.22 es_ES
dc.description.references Truong D.H., Nguyen D.H., Anh-Ta N.T., Bui V.O., Do T.H., Nguyen H.C. 2019. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro antiinflammatory activities of Severinia buxifolia. J. Food Quality, 27: 165-178. https://doi.org/10.1155/2019/8178294 es_ES
dc.description.references Tsado A.N., Lawal B., Mohammed S.S., Famous I.O., Yahaya A.M., Shu’aibu M. 2015. Phytochemical composition antimalarial activity of methanol leaf extract of Crateva adansonii in pberghei infected mice. J. British Biotech., 6: 65-173. https://doi.org/10.9734/BBJ/2015/16038 es_ES
dc.description.references Wadood A., Ghufran M., Babar S.J., Naeem M., Khan A., Ghaffar R. 2013. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Anal. Biochem., 2: 1-4. https://doi.org/10.4172/2161-1009.1000144 es_ES
dc.description.references Wu S.B., Long C., Kennelly E.J. 2013. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Res. Intern., 54: 148-159. https://doi.org/10.1016/j.foodres.2013.06.021 es_ES
dc.description.references Yadav M., Chatterji S., Gupta S.K., Watal G. 2014. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int. J. Pharm. Sci., 6: 30-34. es_ES
dc.description.references Yeh Y.C., Hui C.L., Chih T.T., Lieng L.W., Chuan L.W., Yang W.K., Chun H.L. 2007. Protection by doxycycline against doxorubicin-Induced oxidative stress and apoptosis in mouse testes. Biochem. Pharmacol., 74: 969-980. https://doi.org/10.1016/j.bcp.2007.06.031 es_ES
dc.description.references Yen G.C., Chen C.S., Chang W.T. 2018. Antioxidant activity and anticancer effect of ethanolic and aqueous extracts of the roots of Ficus beecheyana and their phenolic components. J. Food Drug Anal., 26: 182-192. https://doi.org/10.1016/j.jfda.2017.02.002 es_ES
dc.description.references Yusuf A.A., Lawal B., Abubakar A.N., Berinyuy E.B., Omonije Y.O., Umar S.I. 2018. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin. Phytosc., 4: 1-8. es_ES
dc.description.references Yusuf A.A., Garba R., Alawode R.A., Adesina A.D., Oluwajobi I., Ariyeloye S.D., Mohammad I.A., Agboola R.A., Salisu L., Abubakar S., Dan-Mallam U., Berinyuy B.E. 2020a. Effect of drying methods and extractants on secondary metabolite compositions of Azanza garckeana pulp and shaft. Inter. J. Agric. Food Tech., 2: 1-7. es_ES
dc.description.references Yusuf A.A., Lawal B., Sani S., Garba R., Mohammed B.A., Oshevire D.B., Adesina D.A. 2020b. Pharmacological activities of Azanza garckeana (goron tula) grown in Nigeria. Clin. Phytosc., 6: 27-33. https://doi.org/10.1186/s40816-020-00173-0 es_ES
dc.description.references Zhoung R., Zhou D. 2013. Oxidative stress and role of natural plant derived antioxidants in animal reproduction - Review. J. Integ. Agric., 12: 1826-1838. https://doi.org/10.1016/S2095-3119(13)60412-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem