- -

From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling

Mostrar el registro completo del ítem

Irons, L.; Latorre, M.; Humphrey, JD. (2021). From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Annals of Biomedical Engineering. 48(7):1701-1715. https://doi.org/10.1007/s10439-020-02713-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191453

Ficheros en el ítem

Metadatos del ítem

Título: From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling
Autor: Irons, Linda Latorre, Marcos Humphrey, Jay D.
Fecha difusión:
Resumen:
[EN] Tissue-level biomechanical properties and function derive from underlying cell signaling, which regulates mass deposition, organization, and removal. Here, we couple two existing modeling frameworks to capture associated ...[+]
Palabras clave: Mechanobiology , Growth and remodeling , Constrained mixtures , Logic-based modeling , Homeostasis
Derechos de uso: Reserva de todos los derechos
Fuente:
Annals of Biomedical Engineering. (issn: 0090-6964 )
DOI: 10.1007/s10439-020-02713-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10439-020-02713-8
Código del Proyecto:
info:eu-repo/grantAgreement/NIH//R01 HL105297//Mechanisms Underlying the Progression of Arterial Stiffness in Hypertension/
info:eu-repo/grantAgreement/NIH//P01 HL134605 //Endothelial Mechanotransduction in Thoracic Aneurysm Formation and Progression/
info:eu-repo/grantAgreement/NIH//R01 HL139796//Improving Tissue Engineered Vascular Graft Performance via Computational Modeling/
info:eu-repo/grantAgreement/NIH//U01 HL142518//Multimodality imaging-driven multifidelity modeling of aortic dissection/
info:eu-repo/grantAgreement/NIH//R01 HL146723//Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection/
Agradecimientos:
This work was supported by Grants from the US NIH (R01 HL105297, P01 HL134605, R01 HL139796, U01 HL142518, R01 HL146723)
Tipo: Artículo

References

Ambrosi, D., M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey, and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157):20190233, 2019.

Aparício, P., M. S. Thompson, and P. N. Watton. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J. Biomech. 49(12):2321–2330, 2016.

Ateshian, G. A., and T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6):689–702, 2010. [+]
Ambrosi, D., M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey, and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157):20190233, 2019.

Aparício, P., M. S. Thompson, and P. N. Watton. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J. Biomech. 49(12):2321–2330, 2016.

Ateshian, G. A., and T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6):689–702, 2010.

Bellini, C., J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42(3):488–502, 2014.

Bersi, M. R., C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67(5):890–896, 2016.

Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface 14(136):20170327, 2017.

Cardamone, L., A. Valentin, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6):431, 2009.

Chuong, C. -J., and Y. -C. Fung. Residual stress in arteries. In: Frontiers in Biomechanics. Berlin: Springer, pp. 117–129, 1986.

Cyron, C. J., and J. D. Humphrey. Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664, 2017.

Drews, J. D., V. K. Pepper, C. A. Best, J. M. Szafron, J. P. Cheatham, A. R. Yates, K. N. Hor, J. C. Zbinden, Y.-C. Chang, G. J. M. Mirhaidari, et al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12(537):eaax6919, 2020.

Estrada, A. C., K. Yoshida, J. J. Saucerman, and J. W. Holmes. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech. Model. Mechanobiol. 2020.

Hayenga, H. N., B. C. Thorne, S. M. Peirce, and J. D. Humphrey. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39(11):2669, 2011.

Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12):802–812, 2014.

Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.

Irons, L., and J. D. Humphrey. Cell signaling model for arterial mechanobiology. PLoS Comput. Biol. 16(8):e1008161, 2020.

Kraeutler, M. J., A. R. Soltis, and J. J. Saucerman. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Syst. Biol. 4(1):157, 2010.

Kuhl, E. Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29:529–543, 2014.

Latorre, M., M. R. Bersi, and J. D. Humphrey. Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int. J. Eng. Sci. 141:35–46, 2019.

Latorre, M., and J. D. Humphrey. A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. J. Appl. Math. Mech. 98(12):2048–2071, 2018.

Latorre, M., and J. D. Humphrey. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech. Model. Mechanobiol. 17(5):1497–1511, 2018.

Latorre, M., and J. D. Humphrey. Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput. Methods Appl. Mech. Eng. 368:113156, 2020.

Marino, M., G. Pontrelli, G. Vairo, and P. Wriggers. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J. R. Soc. Interface 14(136):20170615, 2017.

Rikard, S. M., T. L. Athey, A. Nelson, S. L. M. Christiansen, J.-J. Lee, J. W. Holmes, S. M. Peirce, and J. J. Saucerman. Multiscale coupling of an agent-based model of tissue fibrosis and a logic-based model of intracellular signaling. Front. Physiol. 10:1481, 2019.

Saucerman, J. J., P. M. Tan, K. S. Buchholz, A. D. McCulloch, and J. H. Omens. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 16(6):361–378, 2019.

Sree, V. D., and A. B. Tepole. Computational systems mechanobiology of growth and remodeling: integration of tissue mechanics and cell regulatory network dynamics. Curr. Opin. Biomed. Eng. 2020.

Tan, P. M., K. S. Buchholz, J. H. Omens, A. D. McCulloch, and J. J. Saucerman. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. PLoS Comput. Biol. 13(11):e1005854, 2017.

Valentin, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Trans. R. Soc. A: Math. , Phys. Eng. Sci. 367(1902):3585–3606, 2009.

Van Doren, S. R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 44:224–231, 2015.

Zeigler, A. C., W. J. Richardson, J. W. Holmes, and J. J. Saucerman. A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. J. Mol. Cell. Cardiol. 94:72–81, 2016.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem