Ambrosi, D., M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey, and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157):20190233, 2019.
Aparício, P., M. S. Thompson, and P. N. Watton. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J. Biomech. 49(12):2321–2330, 2016.
Ateshian, G. A., and T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6):689–702, 2010.
[+]
Ambrosi, D., M. Ben Amar, C. J. Cyron, A. DeSimone, A. Goriely, J. D. Humphrey, and E. Kuhl. Growth and remodelling of living tissues: perspectives, challenges and opportunities. J. R. Soc. Interface 16(157):20190233, 2019.
Aparício, P., M. S. Thompson, and P. N. Watton. A novel chemo-mechano-biological model of arterial tissue growth and remodelling. J. Biomech. 49(12):2321–2330, 2016.
Ateshian, G. A., and T. Ricken. Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9(6):689–702, 2010.
Bellini, C., J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42(3):488–502, 2014.
Bersi, M. R., C. Bellini, J. Wu, K. R. C. Montaniel, D. G. Harrison, and J. D. Humphrey. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67(5):890–896, 2016.
Bersi, M. R., R. Khosravi, A. J. Wujciak, D. G. Harrison, and J. D. Humphrey. Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J. R. Soc. Interface 14(136):20170327, 2017.
Cardamone, L., A. Valentin, J. F. Eberth, and J. D. Humphrey. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 8(6):431, 2009.
Chuong, C. -J., and Y. -C. Fung. Residual stress in arteries. In: Frontiers in Biomechanics. Berlin: Springer, pp. 117–129, 1986.
Cyron, C. J., and J. D. Humphrey. Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664, 2017.
Drews, J. D., V. K. Pepper, C. A. Best, J. M. Szafron, J. P. Cheatham, A. R. Yates, K. N. Hor, J. C. Zbinden, Y.-C. Chang, G. J. M. Mirhaidari, et al. Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci. Transl. Med. 12(537):eaax6919, 2020.
Estrada, A. C., K. Yoshida, J. J. Saucerman, and J. W. Holmes. A multiscale model of cardiac concentric hypertrophy incorporating both mechanical and hormonal drivers of growth. Biomech. Model. Mechanobiol. 2020.
Hayenga, H. N., B. C. Thorne, S. M. Peirce, and J. D. Humphrey. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation. Ann. Biomed. Eng. 39(11):2669, 2011.
Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12):802–812, 2014.
Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12(03):407–430, 2002.
Irons, L., and J. D. Humphrey. Cell signaling model for arterial mechanobiology. PLoS Comput. Biol. 16(8):e1008161, 2020.
Kraeutler, M. J., A. R. Soltis, and J. J. Saucerman. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model. BMC Syst. Biol. 4(1):157, 2010.
Kuhl, E. Growing matter: a review of growth in living systems. J. Mech. Behav. Biomed. Mater. 29:529–543, 2014.
Latorre, M., M. R. Bersi, and J. D. Humphrey. Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int. J. Eng. Sci. 141:35–46, 2019.
Latorre, M., and J. D. Humphrey. A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. J. Appl. Math. Mech. 98(12):2048–2071, 2018.
Latorre, M., and J. D. Humphrey. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech. Model. Mechanobiol. 17(5):1497–1511, 2018.
Latorre, M., and J. D. Humphrey. Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput. Methods Appl. Mech. Eng. 368:113156, 2020.
Marino, M., G. Pontrelli, G. Vairo, and P. Wriggers. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J. R. Soc. Interface 14(136):20170615, 2017.
Rikard, S. M., T. L. Athey, A. Nelson, S. L. M. Christiansen, J.-J. Lee, J. W. Holmes, S. M. Peirce, and J. J. Saucerman. Multiscale coupling of an agent-based model of tissue fibrosis and a logic-based model of intracellular signaling. Front. Physiol. 10:1481, 2019.
Saucerman, J. J., P. M. Tan, K. S. Buchholz, A. D. McCulloch, and J. H. Omens. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 16(6):361–378, 2019.
Sree, V. D., and A. B. Tepole. Computational systems mechanobiology of growth and remodeling: integration of tissue mechanics and cell regulatory network dynamics. Curr. Opin. Biomed. Eng. 2020.
Tan, P. M., K. S. Buchholz, J. H. Omens, A. D. McCulloch, and J. J. Saucerman. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling. PLoS Comput. Biol. 13(11):e1005854, 2017.
Valentin, A., and J. D. Humphrey. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos. Trans. R. Soc. A: Math. , Phys. Eng. Sci. 367(1902):3585–3606, 2009.
Van Doren, S. R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 44:224–231, 2015.
Zeigler, A. C., W. J. Richardson, J. W. Holmes, and J. J. Saucerman. A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation. J. Mol. Cell. Cardiol. 94:72–81, 2016.
[-]