- -

Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data

Mostrar el registro completo del ítem

Latorre, M.; Peña, E.; Montáns, FJ. (2017). Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data. Annals of Biomedical Engineering. 45(3):799-810. https://doi.org/10.1007/s10439-016-1723-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191474

Ficheros en el ítem

Metadatos del ítem

Título: Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data
Autor: Latorre, Marcos Peña, Estefanía Montáns, Francisco Javier
Fecha difusión:
Resumen:
[EN] What-You-Prescribe-Is-What-You-Get (WYPIWYG) procedures are a novel and general phenomenological approach to modelling the behavior of soft materials, applicable to biological tissues in particular. For the hyperelastic ...[+]
Palabras clave: Biological tissues , Orthotropy , Hyperelasticity , WYPIWYG hyperelasticity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Annals of Biomedical Engineering. (issn: 0090-6964 )
DOI: 10.1007/s10439-016-1723-2
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10439-016-1723-2
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-44391-P/ES/DISEÑO Y MEJORA DE DISPOSITIVOS INTRAVASCULARES RECUBIERTOS DE FARMACO MEDIANTE UNA HERRAMIENTA COMPUTACIONAL. APLICACION AL DISEÑO DE STENT Y BALONES EN LESIONES ESTENOTICAS/
info:eu-repo/grantAgreement/MECD//PRX15%2F00065/
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/
info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/
info:eu-repo/grantAgreement/MINECO//DPI2013-44391-P//Diseño y mejora de dispositivos intravasculares recubiertos de farmaco mediante una herramienta computacional: Aplicación al diseño de stent y balones en lesiones estenóticas/
Agradecimientos:
Partial financial support for this work has been given by Grants DPI2015-69801-R and DPI2013-44391-P from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of Spain. F.J. ...[+]
Tipo: Artículo

References

Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three–dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater., in press. doi: 10.1016/j.jmbbm.2016.04.031 .

Chandran, P.L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006

Chen, H., Y. Liu, X. Zhao, Y. Lanir, and G. S. Kassab. A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solid 59(9):1823–1837, 2011 [+]
Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three–dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater., in press. doi: 10.1016/j.jmbbm.2016.04.031 .

Chandran, P.L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006

Chen, H., Y. Liu, X. Zhao, Y. Lanir, and G. S. Kassab. A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solid 59(9):1823–1837, 2011

Cortes, D. H., S. P. Lake, J. A. Kadlowec, L. J. Soslowsky, and D. M. Elliott (2010). Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658, 2010.

Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart. Circ. Physiol. 283(6), H2650–H2659, 2002

Eng, C. M., F. Q. Pancheri, D. E. Lieberman, A. S. Biewener, and L. Dorfman. Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann. Biomed. Eng. 42:1224–1237, 2014.

Evans, S.L., and C. A. Holt. Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J. Strain Anal. 44:337–345, 2009.

Freed, A. D., D. R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3):100–117, 2005

Gasser, T., R. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface, 3:13–35, 2006.

Groves, R.B., S. A. Coulman, J. C. Birchall, and S. L. Evans. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and mourine skin. J. Mech. Behav. Biomed. Mater. 18:167–180, 2013.

Holzapfel, G.A., T. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–18, 2000.

Holzapfel, G.A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. A 367(1902), 3445–3475, 2009.

Holzapfel, G. A., and R. W. Ogden. On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A, 49:561–569, 2015.

Horgan, C.O., and J. G. Murphy. Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A 467: 760–777, 2011.

Humphrey, J.D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2013.

Lake, S.P., M. F. Hadi, V. K. Lai, and V. H. Barocas. Mechanics of a fiber network within a non-fibrilar matrix: model and comparison with collagen-agarose cogels. Ann. Biomed. Eng. 40(10):2111–2121, 2012.

Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979.

Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16(1):1–12, 1983.

Latorre, M., F. and J. Montáns. Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122:13–26, 2013.

Latorre, M., F. J. Montáns. What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput. Mech. 53(6): 1279–1298, 2014.

Latorre, M., F. J. Montáns. Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur. J. Mech. A 53:99–106. 2015.

Latorre, M., and F. J. Montáns. On the tension-compression switch of the Gasser-Ogden-Holzapfel model: Analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 57, 175–189, 2016.

Li, K., R. W. Ogden, and G. A. Holzapfel. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A 57, 178–193, 2016.

Murphy, J.G. Evolution of anisotropy in soft tissue. Proc. R. Soc. Lond. A 470 (2161), 20130548, 2014.

Pancheri, F.Q., C. M. Eng, D. E. Lieberman, A. S. Biewene, and L. Dorfman. A constitutive description of the anisotropic response of the fascia lata. J. Mech. Behav. Biomed. Mater. 30:306–323, 2014.

Ruiz-Alejos, D., J. A. Peña, M. M. Perez, and E. Peña. Experiments and constitutive model for deep and superficial fascia. Digital image correlation and finite element validation. Strain, 2016. in press. doi: 10.1111/str.12198 .

Skacel, P., and J. Bursa. Poisson’s ratio of arterial wall–Inconsistency of constitutive models with experimental data. J. Mech. Behav. Biomed. Mater. 54, 316–327, 2016.

Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9: 9036–9048, 2013.

Sommer, G., A.J. Schriefl, M. Andra, M. Sacherer, C. Viertler, H. Wolinski, and G.A. Holzapfel. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24: 172–192, 2015.

Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129(4): 611–618, 2007.

Sussman, T., and K. J. Bathe. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25(1):53–63, 2009.

Tian, L., J. Henningsen J, M. R. Salick, W. C. Crone, M. Gunderson, S. H. Dailey, and N. C. Chesler. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. J. Mech. Behav. Biomed. Mater. 47, 107–113, 2015.

Wang, H.Q., Y.Y. Wei YY, T. Sacks, Z. Wu, and Z.J. Luo. Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelet. Disord. 10:105–110, 2009.

Weiss, J. A., J. C. Gardines, and C. Bonifasi-Lista. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35:943–950, 2002.

Zang, L., S. P. Lake, V. K. Lai, C. R. Picu, V. H. Barocas, and M. S. Shephard. A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tussues under tensile load. J. Biomech. Eng. 135(1):011008, 2013.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem