- -

Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre, Marcos es_ES
dc.contributor.author Peña, Estefanía es_ES
dc.contributor.author Montáns, Francisco Javier es_ES
dc.date.accessioned 2023-01-26T19:01:45Z
dc.date.available 2023-01-26T19:01:45Z
dc.date.issued 2017-03 es_ES
dc.identifier.issn 0090-6964 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191474
dc.description.abstract [EN] What-You-Prescribe-Is-What-You-Get (WYPIWYG) procedures are a novel and general phenomenological approach to modelling the behavior of soft materials, applicable to biological tissues in particular. For the hyperelastic case, these procedures solve numerically the nonlinear elastic material determination problem. In this paper we show that they can be applied to determine the stored energy density of superficial fascia. In contrast to the usual approach, in such determination no user-prescribed material parameters and no optimization algorithms are employed. The strain energy densities are computed solving the equilibrium equations of the set of experiments. For the case of superficial fascia it is shown that the mechanical behavior derived from such strain energies is capable of reproducing simultaneously the measured load-displacement curves of three experiments to a high accuracy. es_ES
dc.description.sponsorship Partial financial support for this work has been given by Grants DPI2015-69801-R and DPI2013-44391-P from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of Spain. F.J. Montans also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which this paper was finished, and Ministerio de Educacion Cultura y Deporte of Spain for the financial support for that stay under Grant PRX15/00065. The ADINA program license used for this work has been a courtesy of ADINA R&D to the Universidad Politecnica de Madrid. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Biological tissues es_ES
dc.subject Orthotropy es_ES
dc.subject Hyperelasticity es_ES
dc.subject WYPIWYG hyperelasticity es_ES
dc.title Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-016-1723-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44391-P/ES/DISEÑO Y MEJORA DE DISPOSITIVOS INTRAVASCULARES RECUBIERTOS DE FARMACO MEDIANTE UNA HERRAMIENTA COMPUTACIONAL. APLICACION AL DISEÑO DE STENT Y BALONES EN LESIONES ESTENOTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX15%2F00065/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R/ES/MODELADO Y SIMULACION DEL COMPORTAMIENTO MECANICO DE MATERIALES BLANDOS ANISOTROPOS EN GRANDES DEFORMACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69801-R//Modelado y simulación del comportamiento mecánico de materiales blandos anisótropos en grandes deformaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44391-P//Diseño y mejora de dispositivos intravasculares recubiertos de farmaco mediante una herramienta computacional: Aplicación al diseño de stent y balones en lesiones estenóticas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Latorre, M.; Peña, E.; Montáns, FJ. (2017). Determination and Finite Element Validation of the WYPiWYG Strain Energy of Superficial Fascia from Experimental Data. Annals of Biomedical Engineering. 45(3):799-810. https://doi.org/10.1007/s10439-016-1723-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10439-016-1723-2 es_ES
dc.description.upvformatpinicio 799 es_ES
dc.description.upvformatpfin 810 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 3 es_ES
dc.identifier.pmid 27600686 es_ES
dc.relation.pasarela S\467360 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Abbasi, M., M. S. Barakat, K. Vahidkhah, and A. N. Azadani. Characterization of three–dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater., in press. doi: 10.1016/j.jmbbm.2016.04.031 . es_ES
dc.description.references Chandran, P.L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006 es_ES
dc.description.references Chen, H., Y. Liu, X. Zhao, Y. Lanir, and G. S. Kassab. A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solid 59(9):1823–1837, 2011 es_ES
dc.description.references Cortes, D. H., S. P. Lake, J. A. Kadlowec, L. J. Soslowsky, and D. M. Elliott (2010). Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech. Model. Mechanobiol. 9(5), 651–658, 2010. es_ES
dc.description.references Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart. Circ. Physiol. 283(6), H2650–H2659, 2002 es_ES
dc.description.references Eng, C. M., F. Q. Pancheri, D. E. Lieberman, A. S. Biewener, and L. Dorfman. Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann. Biomed. Eng. 42:1224–1237, 2014. es_ES
dc.description.references Evans, S.L., and C. A. Holt. Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J. Strain Anal. 44:337–345, 2009. es_ES
dc.description.references Freed, A. D., D. R. Einstein, and I. Vesely. Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4(2–3):100–117, 2005 es_ES
dc.description.references Gasser, T., R. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J. R. Soc. Interface, 3:13–35, 2006. es_ES
dc.description.references Groves, R.B., S. A. Coulman, J. C. Birchall, and S. L. Evans. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and mourine skin. J. Mech. Behav. Biomed. Mater. 18:167–180, 2013. es_ES
dc.description.references Holzapfel, G.A., T. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–18, 2000. es_ES
dc.description.references Holzapfel, G.A., and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. A 367(1902), 3445–3475, 2009. es_ES
dc.description.references Holzapfel, G. A., and R. W. Ogden. On the tension-compression switch in soft fibrous solids. Eur. J. Mech. A, 49:561–569, 2015. es_ES
dc.description.references Horgan, C.O., and J. G. Murphy. Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A 467: 760–777, 2011. es_ES
dc.description.references Humphrey, J.D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2013. es_ES
dc.description.references Lake, S.P., M. F. Hadi, V. K. Lai, and V. H. Barocas. Mechanics of a fiber network within a non-fibrilar matrix: model and comparison with collagen-agarose cogels. Ann. Biomed. Eng. 40(10):2111–2121, 2012. es_ES
dc.description.references Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979. es_ES
dc.description.references Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16(1):1–12, 1983. es_ES
dc.description.references Latorre, M., F. and J. Montáns. Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122:13–26, 2013. es_ES
dc.description.references Latorre, M., F. J. Montáns. What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput. Mech. 53(6): 1279–1298, 2014. es_ES
dc.description.references Latorre, M., F. J. Montáns. Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur. J. Mech. A 53:99–106. 2015. es_ES
dc.description.references Latorre, M., and F. J. Montáns. On the tension-compression switch of the Gasser-Ogden-Holzapfel model: Analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 57, 175–189, 2016. es_ES
dc.description.references Li, K., R. W. Ogden, and G. A. Holzapfel. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A 57, 178–193, 2016. es_ES
dc.description.references Murphy, J.G. Evolution of anisotropy in soft tissue. Proc. R. Soc. Lond. A 470 (2161), 20130548, 2014. es_ES
dc.description.references Pancheri, F.Q., C. M. Eng, D. E. Lieberman, A. S. Biewene, and L. Dorfman. A constitutive description of the anisotropic response of the fascia lata. J. Mech. Behav. Biomed. Mater. 30:306–323, 2014. es_ES
dc.description.references Ruiz-Alejos, D., J. A. Peña, M. M. Perez, and E. Peña. Experiments and constitutive model for deep and superficial fascia. Digital image correlation and finite element validation. Strain, 2016. in press. doi: 10.1111/str.12198 . es_ES
dc.description.references Skacel, P., and J. Bursa. Poisson’s ratio of arterial wall–Inconsistency of constitutive models with experimental data. J. Mech. Behav. Biomed. Mater. 54, 316–327, 2016. es_ES
dc.description.references Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9: 9036–9048, 2013. es_ES
dc.description.references Sommer, G., A.J. Schriefl, M. Andra, M. Sacherer, C. Viertler, H. Wolinski, and G.A. Holzapfel. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24: 172–192, 2015. es_ES
dc.description.references Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129(4): 611–618, 2007. es_ES
dc.description.references Sussman, T., and K. J. Bathe. A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25(1):53–63, 2009. es_ES
dc.description.references Tian, L., J. Henningsen J, M. R. Salick, W. C. Crone, M. Gunderson, S. H. Dailey, and N. C. Chesler. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests. J. Mech. Behav. Biomed. Mater. 47, 107–113, 2015. es_ES
dc.description.references Wang, H.Q., Y.Y. Wei YY, T. Sacks, Z. Wu, and Z.J. Luo. Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskelet. Disord. 10:105–110, 2009. es_ES
dc.description.references Weiss, J. A., J. C. Gardines, and C. Bonifasi-Lista. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J. Biomech. 35:943–950, 2002. es_ES
dc.description.references Zang, L., S. P. Lake, V. K. Lai, C. R. Picu, V. H. Barocas, and M. S. Shephard. A coupled fiber-matrix model demonstrates highly inhomogeneous microstructural interactions in soft tussues under tensile load. J. Biomech. Eng. 135(1):011008, 2013. es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem