- -

Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics

Mostrar el registro completo del ítem

Burgos-Simon, C.; Cortés, J.; López-Navarro, E.; Pinto, CMA.; Villanueva Micó, RJ. (2022). Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics. European Physical Journal Plus. 137(5):1-12. https://doi.org/10.1140/epjp/s13360-022-02691-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191615

Ficheros en el ítem

Metadatos del ítem

Título: Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics
Autor: Burgos-Simon, Clara Cortés, J.-C. López-Navarro, Elena Pinto, C. M. A. Villanueva Micó, Rafael Jacinto
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Fecha difusión:
Resumen:
[EN] A number of relevant models in Classical Mechanics are formulated by means of the differential equation y ''(t) + At-beta y(t) = 0. In this paper, we improve the results recently established for a randomized reformulation ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
European Physical Journal Plus. (eissn: 2190-5444 )
DOI: 10.1140/epjp/s13360-022-02691-x
Editorial:
Springer
Versión del editor: https://doi.org/10.1140/epjp/s13360-022-02691-x
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/
info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F302/
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00144%2F2013/PT
Agradecimientos:
This paper has been supported by the grant PID2020-115270GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by the grant AICO/2021/302 (Generalitat Valenciana). The author CP was partially supported by CMUP (UID/-MAT/00144/2013), ...[+]
Tipo: Artículo

References

M. Samiullah, A first course in vibrations and waves (Oxford University Press, Oxford, 2015)

D. Zill, A first course in differential equations with modeling applications (Brooks/Cole Cencage Learning, Boston, 2013)

R.P. Agarwal, S. Hodis, D. O’Regan, 500 examples and problems of applied differential equations (Springer Nature, Berlin, Germany, 2019) [+]
M. Samiullah, A first course in vibrations and waves (Oxford University Press, Oxford, 2015)

D. Zill, A first course in differential equations with modeling applications (Brooks/Cole Cencage Learning, Boston, 2013)

R.P. Agarwal, S. Hodis, D. O’Regan, 500 examples and problems of applied differential equations (Springer Nature, Berlin, Germany, 2019)

B. Balachandran, E. Magrab, Vibrations (Cencage Learning, Boston, 2009)

O. Vallee, M. Soares, Airy functions and applications to physics (World Scientific Publishing Company, Singapore, 2010)

H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastoodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1951–1960 (2013)

L. Evangelista, E. Lenzi, Fractional diffusion equations and anomalous diffusion (Cambridge University Press, Cambridge, 2018)

Y. Rossikhin , M. Shitikova, Handbook of fFractional calculus with applications. Applications in Engineering, Life and Social Sciences, Part A, no. 7. DeGruyter (2019)

J. McCauley, Stochastic calculus and differential equations for physics and finance (Cambridge University Press, Cambridge, 2013)

K.-I. Sato, Lèvy processes and infinitely divisible distributions (Cambridge University Press, Cambridge, 1999)

R.C. Smith, Uncertainly quantification: theory, implementation, and applications (SIAM Computational Science & Engineering, Utah, 2013)

C. Burgos, J.-C. Cortés, L. Villafuerte, R.-J. Villanueva, Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: a mean square approach with applications to solve random fractional differential equations. Chaos Solitons Fract. 102, 305–318 (2017)

T. Soong, Random differential equations in Science and Engineering (Academic Press, Cambridge, 1973)

C. Burgos, J.-C. Cortés, A. Debbouche, L. Villafuerte, R.-J. Villanueva, Random fractional generalized Airy differential equations: a probabilistic analysis using mean square calculus. Appl. Math. Comput. 352, 15–29 (2019)

J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of differential entropy (CRC Press, Florida, 2013)

J. Calatayud, J.-C. Cortés, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 1–29 (2018)

F. Dorini, M. Cecconello, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016)

F. Dorini, N. Bobko, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Computat. Appl. Math. 37, 1496–1506 (2018)

G. Falsone, R. Laudani, Closed-form solutions of redundantly constrained stochastic frames. Probab. Eng. Mech. 61, 103084 (2020)

H. Slama, N. El-Bedwhey, A. El-Depsy, M. Selim, Solution of the finite Milne problem in stochastic media with RVT technique. Eur. Phys. J. Plus 132, 505 (2017)

T. Caraballo, J.-C. Cortés, A. Navarro-Quiles, Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Appl. Math. Comput. 356, 198–218 (2019)

C. Burgos, J. Calatayud, J.-C. Cortés, A. Navarro-Quiles, A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Math. Methods Appl. Sci. 41, 18 (2018)

T. Apostol, Mathematical analysis, ser. Addison-Wesley series in mathematics. Addison-Wesley. Available: https://books.google.es/books?id=Le5QAAAAMAAJ (1974)

Y. Khan, Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. Fractals 29(01), 2150004 (2021)

Y. Khan, N. Faraz, Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis, COMPEL. Int. J. Comput. Math. Electric. Electron. Eng. 40(3), 593–601. https://doi.org/10.1108/COMPEL-08-2020-0286

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem