- -

Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Burgos-Simon, Clara es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author López-Navarro, Elena es_ES
dc.contributor.author Pinto, C. M. A. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2023-02-03T19:01:04Z
dc.date.available 2023-02-03T19:01:04Z
dc.date.issued 2022-05-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/191615
dc.description.abstract [EN] A number of relevant models in Classical Mechanics are formulated by means of the differential equation y ''(t) + At-beta y(t) = 0. In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings. es_ES
dc.description.sponsorship This paper has been supported by the grant PID2020-115270GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by the grant AICO/2021/302 (Generalitat Valenciana). The author CP was partially supported by CMUP (UID/-MAT/00144/2013), which is funded by Fundacao para a Ciencia e Tecnologia (FCT) (Portugal) with national (MEC) and European structural funds European Regional Development Fund (FEDER), under the partnership agreement PT2020. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof European Physical Journal Plus es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epjp/s13360-022-02691-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F302/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00144%2F2013/PT es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Burgos-Simon, C.; Cortés, J.; López-Navarro, E.; Pinto, CMA.; Villanueva Micó, RJ. (2022). Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics. European Physical Journal Plus. 137(5):1-12. https://doi.org/10.1140/epjp/s13360-022-02691-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1140/epjp/s13360-022-02691-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 137 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2190-5444 es_ES
dc.relation.pasarela S\460288 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references M. Samiullah, A first course in vibrations and waves (Oxford University Press, Oxford, 2015) es_ES
dc.description.references D. Zill, A first course in differential equations with modeling applications (Brooks/Cole Cencage Learning, Boston, 2013) es_ES
dc.description.references R.P. Agarwal, S. Hodis, D. O’Regan, 500 examples and problems of applied differential equations (Springer Nature, Berlin, Germany, 2019) es_ES
dc.description.references B. Balachandran, E. Magrab, Vibrations (Cencage Learning, Boston, 2009) es_ES
dc.description.references O. Vallee, M. Soares, Airy functions and applications to physics (World Scientific Publishing Company, Singapore, 2010) es_ES
dc.description.references H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastoodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1951–1960 (2013) es_ES
dc.description.references L. Evangelista, E. Lenzi, Fractional diffusion equations and anomalous diffusion (Cambridge University Press, Cambridge, 2018) es_ES
dc.description.references Y. Rossikhin , M. Shitikova, Handbook of fFractional calculus with applications. Applications in Engineering, Life and Social Sciences, Part A, no. 7. DeGruyter (2019) es_ES
dc.description.references J. McCauley, Stochastic calculus and differential equations for physics and finance (Cambridge University Press, Cambridge, 2013) es_ES
dc.description.references K.-I. Sato, Lèvy processes and infinitely divisible distributions (Cambridge University Press, Cambridge, 1999) es_ES
dc.description.references R.C. Smith, Uncertainly quantification: theory, implementation, and applications (SIAM Computational Science & Engineering, Utah, 2013) es_ES
dc.description.references C. Burgos, J.-C. Cortés, L. Villafuerte, R.-J. Villanueva, Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: a mean square approach with applications to solve random fractional differential equations. Chaos Solitons Fract. 102, 305–318 (2017) es_ES
dc.description.references T. Soong, Random differential equations in Science and Engineering (Academic Press, Cambridge, 1973) es_ES
dc.description.references C. Burgos, J.-C. Cortés, A. Debbouche, L. Villafuerte, R.-J. Villanueva, Random fractional generalized Airy differential equations: a probabilistic analysis using mean square calculus. Appl. Math. Comput. 352, 15–29 (2019) es_ES
dc.description.references J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of differential entropy (CRC Press, Florida, 2013) es_ES
dc.description.references J. Calatayud, J.-C. Cortés, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 1–29 (2018) es_ES
dc.description.references F. Dorini, M. Cecconello, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016) es_ES
dc.description.references F. Dorini, N. Bobko, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Computat. Appl. Math. 37, 1496–1506 (2018) es_ES
dc.description.references G. Falsone, R. Laudani, Closed-form solutions of redundantly constrained stochastic frames. Probab. Eng. Mech. 61, 103084 (2020) es_ES
dc.description.references H. Slama, N. El-Bedwhey, A. El-Depsy, M. Selim, Solution of the finite Milne problem in stochastic media with RVT technique. Eur. Phys. J. Plus 132, 505 (2017) es_ES
dc.description.references T. Caraballo, J.-C. Cortés, A. Navarro-Quiles, Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Appl. Math. Comput. 356, 198–218 (2019) es_ES
dc.description.references C. Burgos, J. Calatayud, J.-C. Cortés, A. Navarro-Quiles, A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Math. Methods Appl. Sci. 41, 18 (2018) es_ES
dc.description.references T. Apostol, Mathematical analysis, ser. Addison-Wesley series in mathematics. Addison-Wesley. Available: https://books.google.es/books?id=Le5QAAAAMAAJ (1974) es_ES
dc.description.references Y. Khan, Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. Fractals 29(01), 2150004 (2021) es_ES
dc.description.references Y. Khan, N. Faraz, Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis, COMPEL. Int. J. Comput. Math. Electric. Electron. Eng. 40(3), 593–601. https://doi.org/10.1108/COMPEL-08-2020-0286 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem