Mostrar el registro sencillo del ítem
dc.contributor.author | Burgos-Simon, Clara | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | López-Navarro, Elena | es_ES |
dc.contributor.author | Pinto, C. M. A. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2023-02-03T19:01:04Z | |
dc.date.available | 2023-02-03T19:01:04Z | |
dc.date.issued | 2022-05-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/191615 | |
dc.description.abstract | [EN] A number of relevant models in Classical Mechanics are formulated by means of the differential equation y ''(t) + At-beta y(t) = 0. In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings. | es_ES |
dc.description.sponsorship | This paper has been supported by the grant PID2020-115270GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by the grant AICO/2021/302 (Generalitat Valenciana). The author CP was partially supported by CMUP (UID/-MAT/00144/2013), which is funded by Fundacao para a Ciencia e Tecnologia (FCT) (Portugal) with national (MEC) and European structural funds European Regional Development Fund (FEDER), under the partnership agreement PT2020. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | European Physical Journal Plus | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1140/epjp/s13360-022-02691-x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115270GB-I00/ES/ECUACIONES DIFERENCIALES ALEATORIAS. CUANTIFICACION DE LA INCERTIDUMBRE Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2021%2F302/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F00144%2F2013/PT | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Burgos-Simon, C.; Cortés, J.; López-Navarro, E.; Pinto, CMA.; Villanueva Micó, RJ. (2022). Probabilistic analysis of a foundational class of generalized second-order linear differential equations in Classic Mechanics. European Physical Journal Plus. 137(5):1-12. https://doi.org/10.1140/epjp/s13360-022-02691-x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1140/epjp/s13360-022-02691-x | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 137 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2190-5444 | es_ES |
dc.relation.pasarela | S\460288 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | es_ES |
dc.description.references | M. Samiullah, A first course in vibrations and waves (Oxford University Press, Oxford, 2015) | es_ES |
dc.description.references | D. Zill, A first course in differential equations with modeling applications (Brooks/Cole Cencage Learning, Boston, 2013) | es_ES |
dc.description.references | R.P. Agarwal, S. Hodis, D. O’Regan, 500 examples and problems of applied differential equations (Springer Nature, Berlin, Germany, 2019) | es_ES |
dc.description.references | B. Balachandran, E. Magrab, Vibrations (Cencage Learning, Boston, 2009) | es_ES |
dc.description.references | O. Vallee, M. Soares, Airy functions and applications to physics (World Scientific Publishing Company, Singapore, 2010) | es_ES |
dc.description.references | H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastoodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1951–1960 (2013) | es_ES |
dc.description.references | L. Evangelista, E. Lenzi, Fractional diffusion equations and anomalous diffusion (Cambridge University Press, Cambridge, 2018) | es_ES |
dc.description.references | Y. Rossikhin , M. Shitikova, Handbook of fFractional calculus with applications. Applications in Engineering, Life and Social Sciences, Part A, no. 7. DeGruyter (2019) | es_ES |
dc.description.references | J. McCauley, Stochastic calculus and differential equations for physics and finance (Cambridge University Press, Cambridge, 2013) | es_ES |
dc.description.references | K.-I. Sato, Lèvy processes and infinitely divisible distributions (Cambridge University Press, Cambridge, 1999) | es_ES |
dc.description.references | R.C. Smith, Uncertainly quantification: theory, implementation, and applications (SIAM Computational Science & Engineering, Utah, 2013) | es_ES |
dc.description.references | C. Burgos, J.-C. Cortés, L. Villafuerte, R.-J. Villanueva, Extending the deterministic Riemann-Liouville and Caputo operators to the random framework: a mean square approach with applications to solve random fractional differential equations. Chaos Solitons Fract. 102, 305–318 (2017) | es_ES |
dc.description.references | T. Soong, Random differential equations in Science and Engineering (Academic Press, Cambridge, 1973) | es_ES |
dc.description.references | C. Burgos, J.-C. Cortés, A. Debbouche, L. Villafuerte, R.-J. Villanueva, Random fractional generalized Airy differential equations: a probabilistic analysis using mean square calculus. Appl. Math. Comput. 352, 15–29 (2019) | es_ES |
dc.description.references | J.V. Michalowicz, J.M. Nichols, F. Bucholtz, Handbook of differential entropy (CRC Press, Florida, 2013) | es_ES |
dc.description.references | J. Calatayud, J.-C. Cortés, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 1–29 (2018) | es_ES |
dc.description.references | F. Dorini, M. Cecconello, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016) | es_ES |
dc.description.references | F. Dorini, N. Bobko, L. Dorini, On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Computat. Appl. Math. 37, 1496–1506 (2018) | es_ES |
dc.description.references | G. Falsone, R. Laudani, Closed-form solutions of redundantly constrained stochastic frames. Probab. Eng. Mech. 61, 103084 (2020) | es_ES |
dc.description.references | H. Slama, N. El-Bedwhey, A. El-Depsy, M. Selim, Solution of the finite Milne problem in stochastic media with RVT technique. Eur. Phys. J. Plus 132, 505 (2017) | es_ES |
dc.description.references | T. Caraballo, J.-C. Cortés, A. Navarro-Quiles, Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Appl. Math. Comput. 356, 198–218 (2019) | es_ES |
dc.description.references | C. Burgos, J. Calatayud, J.-C. Cortés, A. Navarro-Quiles, A full probabilistic solution of the random linear fractional differential equation via the random variable transformation technique. Math. Methods Appl. Sci. 41, 18 (2018) | es_ES |
dc.description.references | T. Apostol, Mathematical analysis, ser. Addison-Wesley series in mathematics. Addison-Wesley. Available: https://books.google.es/books?id=Le5QAAAAMAAJ (1974) | es_ES |
dc.description.references | Y. Khan, Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. Fractals 29(01), 2150004 (2021) | es_ES |
dc.description.references | Y. Khan, N. Faraz, Simple use of the Maclaurin series method for linear and non-linear differential equations arising in circuit analysis, COMPEL. Int. J. Comput. Math. Electric. Electron. Eng. 40(3), 593–601. https://doi.org/10.1108/COMPEL-08-2020-0286 | es_ES |