- -

Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alemán-Montes, Bryan es_ES
dc.contributor.author Serra, Pere es_ES
dc.contributor.author Zabala, Alaitz es_ES
dc.coverage.spatial east=-83.753428; north=9.748916999999999; name=Costa Rica es_ES
dc.date.accessioned 2023-02-07T08:22:25Z
dc.date.available 2023-02-07T08:22:25Z
dc.date.issued 2023-01-30
dc.identifier.issn 1133-0953
dc.identifier.uri http://hdl.handle.net/10251/191683
dc.description.abstract [EN] Remote sensing offers important inputs for sugarcane yield estimation, since its temporal and spatial approaches allow monitoring the phenological cycle of the crop. The objective of this research was to apply an operational method for the estimation of sugarcane yield and sugar content through the combination of field variables with vegetation indices, calculated with the satellite sensors on board Sentinel-2 and Landsat-8 in a cooperative from Costa Rica. In addition, historical harvest data and start months of phenological cycle were used to estimate sugarcane yield and sugar content per ton using multiple linear regressions. The integration of historical data and Simple Ratio (SR) vegetation index, calculated in different steps of the phenological cycle (in the months of September, December and January), allowed us to obtain an estimation model of sugarcane yield (tons of sugarcane per hectare) with a regression coefficient (R2) of 0.64 and a RMSE of 8.0 tons/ha. While for sugar content (kilograms of refined sugar per ton) we obtained a R2 of 0.59 integrating historical variables and the vegetation indexes SR and Green Normalized Difference Vegetation Index (GNDVI); in this case the RMSE was 4.9 kg/tons. Ultimately, this operational method of yield estimation provides tools for decision making before, during and after the harvest stage. es_ES
dc.description.abstract [ES] La teledetección proporciona información de importancia en la estimación de rendimientos de caña de azúcar, ya que su abordaje temporal y espacial permite hacer el seguimiento del cultivo durante su ciclo fenológico. El objetivo de este trabajo era aplicar un método operativo para la estimación del rendimiento agrícola e industrial a través de la combinación de variables de campo con índices de vegetación, calculados con los sensores satelitales a bordo de Sentinel-2 y Landsat-8 en una cooperativa de Costa Rica. Se utilizaron además registros históricos de cosecha y meses de inicio del ciclo fenológico para estimar mediante regresiones lineales múltiples los rendimientos. La integración de registros históricos y el índice de vegetación Simple Ratio (SR), calculados en distintas etapas del ciclo fenológico (en los meses de septiembre, diciembre y enero), permitió obtener un modelo de estimación del rendimiento agrícola (toneladas de caña de azúcar por hectárea) con un coeficiente de regresión (R2) de 0,64 y un RMSE de 8,0 ton/ha. Mientras que para el rendimiento industrial (kilogramos de azúcar refinado por tonelada de caña de azúcar) se obtuvo un R2 de 0,59 integrando variables históricas y los índices de vegetación SR y Green Normalized Difference Vegetation Index (GNDVI); en este caso el RMSE fue de 4,9 kg/ton. En definitiva, este modelo operativo de estimación de rendimientos proporciona herramientas para la toma de decisiones antes, durante y después de la etapa de cosecha. es_ES
dc.description.sponsorship La Universidad de Costa Rica, a través de la Oficina de Asuntos Internaciones y Cooperación Externa (OAICE) ha financiado este trabajo, mediante el número de contrato OAICE-59-2021. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista de Teledetección es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Sugarcane es_ES
dc.subject Vegetation indexes es_ES
dc.subject Linear regression es_ES
dc.subject Sentinel-2 es_ES
dc.subject Landsat-8 es_ES
dc.subject Caña de azúcar es_ES
dc.subject Índices de vegetación es_ES
dc.subject Regresiones lineales es_ES
dc.title Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación es_ES
dc.title.alternative Models for the estimation of sugarcane yield in Costa Rica with field data and vegetation indices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/raet.2023.18705
dc.relation.projectID info:eu-repo/grantAgreement/UCR//OAICE-59-2021 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Alemán-Montes, B.; Serra, P.; Zabala, A. (2023). Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación. Revista de Teledetección. (61):1-13. https://doi.org/10.4995/raet.2023.18705 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/raet.2023.18705 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 61 es_ES
dc.identifier.eissn 1988-8740
dc.relation.pasarela OJS\18705 es_ES
dc.contributor.funder Universidad de Costa Rica es_ES
dc.description.references Abdel-Rahman, E.M., Ahmed, F.B. 2008. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. International Journal of Remote Sensing, 29(13), 3753-3767. https://doi.org/10.1080/01431160701874603 es_ES
dc.description.references Abebe, G., Tadesse, T., Gessesse, B. 2022. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. Journal of the Indian Society of Remote Sensing, 50, 143-157. https://doi.org/10.1007/s12524-021-01466-8 es_ES
dc.description.references Alemán-Montes, B., Henríquez-Henríquez, C., Ramírez-Rodríguez, T., Largaespada-Zelaya, K. 2021. Estimación de rendimiento en el cultivo de caña de azúcar (Saccharum officinarum) a partir de fotogrametría con vehículos aéreos no tripulados (VANT). Agronomía Costarricense, 45(1), 67-80. https://doi.org/10.15517/rac.v45i1.45695 es_ES
dc.description.references Alemán, B., Serra, P., Zabala, A. 2022. Estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación. En L.Á. Ruiz Fernández, J. Estornell Cremades, M. González de Audícana Amenábar, J. Álvarez Mozos (Ed.), XIX Congreso de la Asociación Española de Teledetección, 27-30. es_ES
dc.description.references Allison, J.C.S., Pammenter, N.W., Haslam, R.J. 2007. Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African Journal of Botany, 73(4), 546-551. https://doi.org/10.1016/j.sajb.2007.04.065 es_ES
dc.description.references Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F., Siegmund, B. 2010. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, 31(20), 5391-5407. https://doi.org/10.1080/01431160903349057 es_ES
dc.description.references Canata, T.F., Wei, M.C.F., Maldaner, L.F., Molin, J.P. 2021. Sugarcane yield mapping using highresolution imagery data and machine learning technique. Remote Sensing, 13(2), 1-14. https://doi.org/10.3390/rs13020232 es_ES
dc.description.references Chaves, M., Bermúdez, L. 2015. Agroindustria azucarera costarricense: un modelo organizacional y productivo efectivo con 75 años de vigencia Introducción. En Departamento de investigación y extensión de la caña de azúcar (DIECA). es_ES
dc.description.references Chaves, M., Picoli, M., Sanches, I. 2020. Recent applications of Landsat 8/OLI and Sentinel-2/ MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062 es_ES
dc.description.references Cock, J.H. 2003. Sugarcane growth and development. International Sugar Journal, 105(1259), 540-552. es_ES
dc.description.references Dubey, S.K., Gavli, A.S., Yadav, S.K., Sehgal, S., Ray, S.S. 2018. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India. Journal of the Indian Society of Remote Sensing, 46(11), 1823-1833. https://doi.org/10.1007/s12524-018-0839-2 es_ES
dc.description.references ESA, (European Space Agency). 2021. S2 MPC Sen2Cor Software. es_ES
dc.description.references Escadafal, R., Huete, A. 1991. Étude Des Propriétés Spectrales Des Sols Arides Appliquée à Lamélioration Des Indices de Vegetation Obtenus Par Télédection. CR Académie des Sciences de Paris, 312(2), 1385-1391. http://www.scopus.com/inward/record.url?eid=2-s2.0-0026305591&partnerID=40&md5=1a9a77276f4613b8eec010a111f41ff0 es_ES
dc.description.references Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N. 1996. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7 es_ES
dc.description.references Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3), 416-426. https://doi.org/10.1016/S0034-4257(02)00018-4 es_ES
dc.description.references Huete, A. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(1), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X es_ES
dc.description.references Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(12), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2 es_ES
dc.description.references IMN, (Instituto meteorológico Nacional de Costa Rica). 2008. Atlas climático de Costa Rica. https://www.imn.ac.cr/atlas-climatologico es_ES
dc.description.references INEC (Instituto Nacional de Estadística y Censos). 2020. Encuesta Nacional Agropecuaria 2019: Resultados Generales de la Actividad Agrícola y Forestal. https://inec.cr/estadisticas-fuentes/encuestas/encuesta-nacional-agropecuaria?page=7 es_ES
dc.description.references Inman-Bamber, N.G. 1994. Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 36(1), 41-51. https://doi.org/10.1016/0378-4290(94)90051-5 es_ES
dc.description.references James, G., Witten, D., Trevor, H., Tibshirani, R. 2013. An Introduction to Statistical Learning - with Applications in R, Gareth James, Springer. https://doi.org/10.1007/978-1-4614-7138-7 es_ES
dc.description.references Jiménez-Jiménez, S.I., Marcial-Pablo, M. de J., Ojeda-Bustamante, W., Sifuentes-Ibarra, E., Inzunza-Ibarra, M.A., Sánchez-Cohen, I. 2022. VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data. Agronomy, 12(7). https://doi.org/10.3390/agronomy12071518 es_ES
dc.description.references Jordan, C.F. 1969. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663-666. https://doi.org/10.2307/1936256 es_ES
dc.description.references Krupavathi, K., Raghubabu, M., Mani, A., Parasad, P.R.K., Edukondalu, L. 2022. Field-Scale Estimation and Comparison of the Sugarcane Yield from Remote Sensing Data: A Machine Learning Approach. Journal of the Indian Society of Remote Sensing, 50(2), 299-312. https://doi.org/10.1007/s12524-021-01448-w es_ES
dc.description.references Li, J., Lu, X., Cheng, K., Liu, W. 2020. Regression and Time Series Model Selection. Regression and Time Series Model Selection, 1968. https://doi.org/10.1142/3573 es_ES
dc.description.references dos Santos Luciano, A.C., Picoli, M.C.A., Duft, D.G., Rocha, J.V., Leal, M.R.L.V., le Maire, G. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture, 184, 106063. https://doi.org/10.1016/j.compag.2021.106063 es_ES
dc.description.references Mata, R., Rosales, A., Sandoval, Da., Vindas, E., Alemán, B. 2020. Subórdenes de suelos de Costa Rica [mapa digital]. Escala 1:200000. http://www.cia.ucr.ac.cr/es/mapa-de-suelos-de-costa-rica es_ES
dc.description.references Max, A., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Ziem, A., Scrucca, L., Hunt, T., Kuhn, M.M. 2020. Package 'caret ' R. es_ES
dc.description.references Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J.F., Petit, M. 2014. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on reunion island. Remote Sensing, 6(7), 6620-6635. https://doi.org/10.3390/rs6076620 es_ES
dc.description.references Narmilan, A., Gonzalez, F., Salgadoe, A.S.A., Kumarasiri, U.W.L.M., Weerasinghe, H.A.S., Kulasekara, B.R. 2022. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5), 1140. https://doi.org/10.3390/rs14051140 es_ES
dc.description.references Panigrahy, S., Sharma, S.A. 1997. Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91. https://doi.org/10.1016/S0924-2716(97)83003-1 es_ES
dc.description.references Pearson, R.L., Miller, L.D. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of Shortgrass Prairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of the Environment. es_ES
dc.description.references Piekutowska, M., Niedbała, G., Piskier, T., Lenartowicz, T., Pilarski, K., Wojciechowski, T., Pilarska, A.A., Czechowska-Kosacka, A. 2021. The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy, 11(5), 885. https://doi.org/10.3390/agronomy11050885 es_ES
dc.description.references Rahman, M.M., Robson, A. 2020. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level. Remote Sensing, 12(8), 1313. https://doi.org/10.3390/rs12081313 es_ES
dc.description.references Rahman, M.M., Robson, A.J. 2016. A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region. Advances in Remote Sensing, 5, 93-102. https://doi.org/10.4236/ars.2016.52008 es_ES
dc.description.references Rao, P.V.K., Rao, V.V., Venkataratnam, L. 2002. Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech, 4(3-4), 97-101. https://doi.org/10.1007/BF02942689 es_ES
dc.description.references Richardson, A.J., Wiegand, C.L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552. es_ES
dc.description.references Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) symposium, 351, 309-317. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf es_ES
dc.description.references Rudorff, B.F.T., Batista, G.T. 1990. Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sensing of Environment, 33(3), 183-192. https://doi.org/10.1016/0034-4257(90)90029-L es_ES
dc.description.references Saez, J.V. 2017. Dinámica de acumulación de sacarosa en tallos de caña de azúcar (Saccharum spp.) modulada por cambios en la relación fuente-destino. Universidad Nacional de Cordoba. es_ES
dc.description.references Shendryk, Y., Davy, R., Thorburn, P. 2021. Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning. Field Crops Research, 260(October 2020), 107984. https://doi.org/10.1016/j.fcr.2020.107984 es_ES
dc.description.references Simões, M. dos S., Rocha, J.V., Lamparelli, R.A.C. 2005. Variáveis espectrais e indicadores de desenvolvimento e produtividade da canadeaçúcar. Scientia Agricola, 62(3), 199–207. https://doi.org/10.1590/S0103-90162005000300001 es_ES
dc.description.references Sishodia, R.P., Ray, R.L., Singh, S.K. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 1–31. https://doi.org/10.3390/rs12193136 es_ES
dc.description.references Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., Immitzer, M. 2021. Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 1-46. https://doi.org/10.3390/rs13204040 es_ES
dc.description.references USGS, (United States Geological Survey). 2022. Landsat 8-9 Collection 2 (C2) Level 2 Science Product ( L2SP ) Guide. En USGS (Vol. 2, Número March). es_ES
dc.description.references Zhao, Y., Justina, D. Della, Kazama, Y., Rocha, J.V., Graziano, P.S., Lamparelli, R.A.C. 2016. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery. En C.M.U. Neale y A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII (Vol. 9998, p. 99980J). https://doi.org/10.1117/12.2242490 es_ES
dc.description.references Zumo, I.M., Hashim, M. 2020. Mapping Seasonal Variations of Grazing Land Above-ground Biomass with Sentinel 2A Satellite Data. IOP Conference Series: Earth and Environmental Science, 540(1). https://doi.org/10.1088/1755-1315/540/1/012061 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem