Mostrar el registro sencillo del ítem
dc.contributor.author | Alemán-Montes, Bryan | es_ES |
dc.contributor.author | Serra, Pere | es_ES |
dc.contributor.author | Zabala, Alaitz | es_ES |
dc.coverage.spatial | east=-83.753428; north=9.748916999999999; name=Costa Rica | es_ES |
dc.date.accessioned | 2023-02-07T08:22:25Z | |
dc.date.available | 2023-02-07T08:22:25Z | |
dc.date.issued | 2023-01-30 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/191683 | |
dc.description.abstract | [EN] Remote sensing offers important inputs for sugarcane yield estimation, since its temporal and spatial approaches allow monitoring the phenological cycle of the crop. The objective of this research was to apply an operational method for the estimation of sugarcane yield and sugar content through the combination of field variables with vegetation indices, calculated with the satellite sensors on board Sentinel-2 and Landsat-8 in a cooperative from Costa Rica. In addition, historical harvest data and start months of phenological cycle were used to estimate sugarcane yield and sugar content per ton using multiple linear regressions. The integration of historical data and Simple Ratio (SR) vegetation index, calculated in different steps of the phenological cycle (in the months of September, December and January), allowed us to obtain an estimation model of sugarcane yield (tons of sugarcane per hectare) with a regression coefficient (R2) of 0.64 and a RMSE of 8.0 tons/ha. While for sugar content (kilograms of refined sugar per ton) we obtained a R2 of 0.59 integrating historical variables and the vegetation indexes SR and Green Normalized Difference Vegetation Index (GNDVI); in this case the RMSE was 4.9 kg/tons. Ultimately, this operational method of yield estimation provides tools for decision making before, during and after the harvest stage. | es_ES |
dc.description.abstract | [ES] La teledetección proporciona información de importancia en la estimación de rendimientos de caña de azúcar, ya que su abordaje temporal y espacial permite hacer el seguimiento del cultivo durante su ciclo fenológico. El objetivo de este trabajo era aplicar un método operativo para la estimación del rendimiento agrícola e industrial a través de la combinación de variables de campo con índices de vegetación, calculados con los sensores satelitales a bordo de Sentinel-2 y Landsat-8 en una cooperativa de Costa Rica. Se utilizaron además registros históricos de cosecha y meses de inicio del ciclo fenológico para estimar mediante regresiones lineales múltiples los rendimientos. La integración de registros históricos y el índice de vegetación Simple Ratio (SR), calculados en distintas etapas del ciclo fenológico (en los meses de septiembre, diciembre y enero), permitió obtener un modelo de estimación del rendimiento agrícola (toneladas de caña de azúcar por hectárea) con un coeficiente de regresión (R2) de 0,64 y un RMSE de 8,0 ton/ha. Mientras que para el rendimiento industrial (kilogramos de azúcar refinado por tonelada de caña de azúcar) se obtuvo un R2 de 0,59 integrando variables históricas y los índices de vegetación SR y Green Normalized Difference Vegetation Index (GNDVI); en este caso el RMSE fue de 4,9 kg/ton. En definitiva, este modelo operativo de estimación de rendimientos proporciona herramientas para la toma de decisiones antes, durante y después de la etapa de cosecha. | es_ES |
dc.description.sponsorship | La Universidad de Costa Rica, a través de la Oficina de Asuntos Internaciones y Cooperación Externa (OAICE) ha financiado este trabajo, mediante el número de contrato OAICE-59-2021. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Sugarcane | es_ES |
dc.subject | Vegetation indexes | es_ES |
dc.subject | Linear regression | es_ES |
dc.subject | Sentinel-2 | es_ES |
dc.subject | Landsat-8 | es_ES |
dc.subject | Caña de azúcar | es_ES |
dc.subject | Índices de vegetación | es_ES |
dc.subject | Regresiones lineales | es_ES |
dc.title | Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación | es_ES |
dc.title.alternative | Models for the estimation of sugarcane yield in Costa Rica with field data and vegetation indices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2023.18705 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UCR//OAICE-59-2021 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Alemán-Montes, B.; Serra, P.; Zabala, A. (2023). Modelos para la estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación. Revista de Teledetección. (61):1-13. https://doi.org/10.4995/raet.2023.18705 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2023.18705 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 61 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\18705 | es_ES |
dc.contributor.funder | Universidad de Costa Rica | es_ES |
dc.description.references | Abdel-Rahman, E.M., Ahmed, F.B. 2008. The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: A review of the literature. International Journal of Remote Sensing, 29(13), 3753-3767. https://doi.org/10.1080/01431160701874603 | es_ES |
dc.description.references | Abebe, G., Tadesse, T., Gessesse, B. 2022. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. Journal of the Indian Society of Remote Sensing, 50, 143-157. https://doi.org/10.1007/s12524-021-01466-8 | es_ES |
dc.description.references | Alemán-Montes, B., Henríquez-Henríquez, C., Ramírez-Rodríguez, T., Largaespada-Zelaya, K. 2021. Estimación de rendimiento en el cultivo de caña de azúcar (Saccharum officinarum) a partir de fotogrametría con vehículos aéreos no tripulados (VANT). Agronomía Costarricense, 45(1), 67-80. https://doi.org/10.15517/rac.v45i1.45695 | es_ES |
dc.description.references | Alemán, B., Serra, P., Zabala, A. 2022. Estimación del rendimiento de la caña de azúcar en Costa Rica con datos de campo e índices de vegetación. En L.Á. Ruiz Fernández, J. Estornell Cremades, M. González de Audícana Amenábar, J. Álvarez Mozos (Ed.), XIX Congreso de la Asociación Española de Teledetección, 27-30. | es_ES |
dc.description.references | Allison, J.C.S., Pammenter, N.W., Haslam, R.J. 2007. Why does sugarcane (Saccharum sp. hybrid) grow slowly? South African Journal of Botany, 73(4), 546-551. https://doi.org/10.1016/j.sajb.2007.04.065 | es_ES |
dc.description.references | Bégué, A., Lebourgeois, V., Bappel, E., Todoroff, P., Pellegrino, A., Baillarin, F., Siegmund, B. 2010. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. International Journal of Remote Sensing, 31(20), 5391-5407. https://doi.org/10.1080/01431160903349057 | es_ES |
dc.description.references | Canata, T.F., Wei, M.C.F., Maldaner, L.F., Molin, J.P. 2021. Sugarcane yield mapping using highresolution imagery data and machine learning technique. Remote Sensing, 13(2), 1-14. https://doi.org/10.3390/rs13020232 | es_ES |
dc.description.references | Chaves, M., Bermúdez, L. 2015. Agroindustria azucarera costarricense: un modelo organizacional y productivo efectivo con 75 años de vigencia Introducción. En Departamento de investigación y extensión de la caña de azúcar (DIECA). | es_ES |
dc.description.references | Chaves, M., Picoli, M., Sanches, I. 2020. Recent applications of Landsat 8/OLI and Sentinel-2/ MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183062 | es_ES |
dc.description.references | Cock, J.H. 2003. Sugarcane growth and development. International Sugar Journal, 105(1259), 540-552. | es_ES |
dc.description.references | Dubey, S.K., Gavli, A.S., Yadav, S.K., Sehgal, S., Ray, S.S. 2018. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India. Journal of the Indian Society of Remote Sensing, 46(11), 1823-1833. https://doi.org/10.1007/s12524-018-0839-2 | es_ES |
dc.description.references | ESA, (European Space Agency). 2021. S2 MPC Sen2Cor Software. | es_ES |
dc.description.references | Escadafal, R., Huete, A. 1991. Étude Des Propriétés Spectrales Des Sols Arides Appliquée à Lamélioration Des Indices de Vegetation Obtenus Par Télédection. CR Académie des Sciences de Paris, 312(2), 1385-1391. http://www.scopus.com/inward/record.url?eid=2-s2.0-0026305591&partnerID=40&md5=1a9a77276f4613b8eec010a111f41ff0 | es_ES |
dc.description.references | Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N. 1996. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sensing of Environment, 58(3), 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7 | es_ES |
dc.description.references | Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3), 416-426. https://doi.org/10.1016/S0034-4257(02)00018-4 | es_ES |
dc.description.references | Huete, A. 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(1), 295-309. https://doi.org/10.1016/0034-4257(88)90106-X | es_ES |
dc.description.references | Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(12), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2 | es_ES |
dc.description.references | IMN, (Instituto meteorológico Nacional de Costa Rica). 2008. Atlas climático de Costa Rica. https://www.imn.ac.cr/atlas-climatologico | es_ES |
dc.description.references | INEC (Instituto Nacional de Estadística y Censos). 2020. Encuesta Nacional Agropecuaria 2019: Resultados Generales de la Actividad Agrícola y Forestal. https://inec.cr/estadisticas-fuentes/encuestas/encuesta-nacional-agropecuaria?page=7 | es_ES |
dc.description.references | Inman-Bamber, N.G. 1994. Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 36(1), 41-51. https://doi.org/10.1016/0378-4290(94)90051-5 | es_ES |
dc.description.references | James, G., Witten, D., Trevor, H., Tibshirani, R. 2013. An Introduction to Statistical Learning - with Applications in R, Gareth James, Springer. https://doi.org/10.1007/978-1-4614-7138-7 | es_ES |
dc.description.references | Jiménez-Jiménez, S.I., Marcial-Pablo, M. de J., Ojeda-Bustamante, W., Sifuentes-Ibarra, E., Inzunza-Ibarra, M.A., Sánchez-Cohen, I. 2022. VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data. Agronomy, 12(7). https://doi.org/10.3390/agronomy12071518 | es_ES |
dc.description.references | Jordan, C.F. 1969. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663-666. https://doi.org/10.2307/1936256 | es_ES |
dc.description.references | Krupavathi, K., Raghubabu, M., Mani, A., Parasad, P.R.K., Edukondalu, L. 2022. Field-Scale Estimation and Comparison of the Sugarcane Yield from Remote Sensing Data: A Machine Learning Approach. Journal of the Indian Society of Remote Sensing, 50(2), 299-312. https://doi.org/10.1007/s12524-021-01448-w | es_ES |
dc.description.references | Li, J., Lu, X., Cheng, K., Liu, W. 2020. Regression and Time Series Model Selection. Regression and Time Series Model Selection, 1968. https://doi.org/10.1142/3573 | es_ES |
dc.description.references | dos Santos Luciano, A.C., Picoli, M.C.A., Duft, D.G., Rocha, J.V., Leal, M.R.L.V., le Maire, G. 2021. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture, 184, 106063. https://doi.org/10.1016/j.compag.2021.106063 | es_ES |
dc.description.references | Mata, R., Rosales, A., Sandoval, Da., Vindas, E., Alemán, B. 2020. Subórdenes de suelos de Costa Rica [mapa digital]. Escala 1:200000. http://www.cia.ucr.ac.cr/es/mapa-de-suelos-de-costa-rica | es_ES |
dc.description.references | Max, A., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Ziem, A., Scrucca, L., Hunt, T., Kuhn, M.M. 2020. Package 'caret ' R. | es_ES |
dc.description.references | Morel, J., Todoroff, P., Bégué, A., Bury, A., Martiné, J.F., Petit, M. 2014. Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: A case study on reunion island. Remote Sensing, 6(7), 6620-6635. https://doi.org/10.3390/rs6076620 | es_ES |
dc.description.references | Narmilan, A., Gonzalez, F., Salgadoe, A.S.A., Kumarasiri, U.W.L.M., Weerasinghe, H.A.S., Kulasekara, B.R. 2022. Predicting Canopy Chlorophyll Content in Sugarcane Crops Using Machine Learning Algorithms and Spectral Vegetation Indices Derived from UAV Multispectral Imagery. Remote Sensing, 14(5), 1140. https://doi.org/10.3390/rs14051140 | es_ES |
dc.description.references | Panigrahy, S., Sharma, S.A. 1997. Mapping of crop rotation using multidate Indian Remote Sensing Satellite digital data. ISPRS Journal of Photogrammetry and Remote Sensing, 52(2), 85-91. https://doi.org/10.1016/S0924-2716(97)83003-1 | es_ES |
dc.description.references | Pearson, R.L., Miller, L.D. 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of Shortgrass Prairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of the Environment. | es_ES |
dc.description.references | Piekutowska, M., Niedbała, G., Piskier, T., Lenartowicz, T., Pilarski, K., Wojciechowski, T., Pilarska, A.A., Czechowska-Kosacka, A. 2021. The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy, 11(5), 885. https://doi.org/10.3390/agronomy11050885 | es_ES |
dc.description.references | Rahman, M.M., Robson, A. 2020. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level. Remote Sensing, 12(8), 1313. https://doi.org/10.3390/rs12081313 | es_ES |
dc.description.references | Rahman, M.M., Robson, A.J. 2016. A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region. Advances in Remote Sensing, 5, 93-102. https://doi.org/10.4236/ars.2016.52008 | es_ES |
dc.description.references | Rao, P.V.K., Rao, V.V., Venkataratnam, L. 2002. Remote sensing: A technology for assessment of sugarcane crop acreage and yield. Sugar Tech, 4(3-4), 97-101. https://doi.org/10.1007/BF02942689 | es_ES |
dc.description.references | Richardson, A.J., Wiegand, C.L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552. | es_ES |
dc.description.references | Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) symposium, 351, 309-317. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740022614.pdf | es_ES |
dc.description.references | Rudorff, B.F.T., Batista, G.T. 1990. Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sensing of Environment, 33(3), 183-192. https://doi.org/10.1016/0034-4257(90)90029-L | es_ES |
dc.description.references | Saez, J.V. 2017. Dinámica de acumulación de sacarosa en tallos de caña de azúcar (Saccharum spp.) modulada por cambios en la relación fuente-destino. Universidad Nacional de Cordoba. | es_ES |
dc.description.references | Shendryk, Y., Davy, R., Thorburn, P. 2021. Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning. Field Crops Research, 260(October 2020), 107984. https://doi.org/10.1016/j.fcr.2020.107984 | es_ES |
dc.description.references | Simões, M. dos S., Rocha, J.V., Lamparelli, R.A.C. 2005. Variáveis espectrais e indicadores de desenvolvimento e produtividade da canadeaçúcar. Scientia Agricola, 62(3), 199–207. https://doi.org/10.1590/S0103-90162005000300001 | es_ES |
dc.description.references | Sishodia, R.P., Ray, R.L., Singh, S.K. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 1–31. https://doi.org/10.3390/rs12193136 | es_ES |
dc.description.references | Som-Ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., Immitzer, M. 2021. Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 1-46. https://doi.org/10.3390/rs13204040 | es_ES |
dc.description.references | USGS, (United States Geological Survey). 2022. Landsat 8-9 Collection 2 (C2) Level 2 Science Product ( L2SP ) Guide. En USGS (Vol. 2, Número March). | es_ES |
dc.description.references | Zhao, Y., Justina, D. Della, Kazama, Y., Rocha, J.V., Graziano, P.S., Lamparelli, R.A.C. 2016. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery. En C.M.U. Neale y A. Maltese (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII (Vol. 9998, p. 99980J). https://doi.org/10.1117/12.2242490 | es_ES |
dc.description.references | Zumo, I.M., Hashim, M. 2020. Mapping Seasonal Variations of Grazing Land Above-ground Biomass with Sentinel 2A Satellite Data. IOP Conference Series: Earth and Environmental Science, 540(1). https://doi.org/10.1088/1755-1315/540/1/012061 | es_ES |