Akaike, H. 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In: 2nd International Symposium on Information Theory. Budapest, Hungary, 2-8 September. pp 267-281.
Aparecido, L.E.D.O., Moraes, J.R.D.S.C.D., Lima, R.F.D., Torsoni, G.B. 2022. Spatial Interpolation Techniques to Map Rainfall in Southeast Brazil. Revista Brasileira de Meteorologia, 37(1), 141-155. https://doi.org/10.1590/0102-77863710015
Burnham, K.P., Anderson, D.R. 2002. Model selection and inference: A practical information-theoretic approach. New York: Springer-Verlag.
[+]
Akaike, H. 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In: 2nd International Symposium on Information Theory. Budapest, Hungary, 2-8 September. pp 267-281.
Aparecido, L.E.D.O., Moraes, J.R.D.S.C.D., Lima, R.F.D., Torsoni, G.B. 2022. Spatial Interpolation Techniques to Map Rainfall in Southeast Brazil. Revista Brasileira de Meteorologia, 37(1), 141-155. https://doi.org/10.1590/0102-77863710015
Burnham, K.P., Anderson, D.R. 2002. Model selection and inference: A practical information-theoretic approach. New York: Springer-Verlag.
Bustos, E., Meza, F.J. 2015. A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile. Theoretical and Applied Climatology, 120, 211-226. https://doi.org/10.1007/s00704-014-1167-2
Cortes, C., Vapnik, V. 1995. Support-Vector Networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018
Cristóbal, J., Ninyerola, M., Pons, X. 2008. Modeling air temperature through a combination of remote sensing and GIS data. Journal of Geophysical Research: Atmospheres, 113(D13). https://doi.org/10.1029/2007JD009318
Draper, N.R., Smith, H. 1998. Applied regression analysis. 326. New York: John Wiley & Sons. https://doi.org/10.1002/9781118625590
Estévez, J., Gavilán, P., Giráldez J.V. 2011. Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology. 402(1-2), 144-154. https://doi.org/10.1016/j.jhydrol.2011.02.031
Fotheringham, S., Brundson, C.H., Charlton, M. 2002. Geographically Weighted Regression: The analysis of spatially varying relationships. Chichester: John Wiley & Sons.
Gutiérrez-Puebla, J., Daniel-Cardozo, O., García Palomares, J.C. 2012. Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las estaciones del Metro de Madrid. In: XV Congreso Nacional de Tecnologías de la Información Geográfica. Madrid, Spain, 19-21 September. pp 327-338.
Herrera, S., Fernández, J., Gutiérrez, J.M. 2016. Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36(2), 900-908. https://doi.org/10.1002/joc.4391
Huang, F., Ma, W., Wang, B., Hu, Z., Ma, Y., Sun, G., Lin Y. 2017. Air temperature estimation with MODIS data over the Northern Tibetan Plateau. Advances in Atmospheric Sciences, 34(5), 650-662. https://doi.org/10.1007/s00376-016-6152-5
Jarvis, C.H., Stuart, N. 2001. A Comparison among Strategies for Interpolating Maximum and Minimum Daily Air Temperatures. Part II: The Interaction between Number of Guiding Variables and the Type of Interpolation Method. Journal of Applied Meteorology, 40(6), 1075-1084. https://doi.org/10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2
Karatzoglou, A., Meyer, D., Hornik, K. 2006. Support vector machines in R. Journal of Statistical Software, 15(9), 1-28. https://doi.org/10.18637/jss.v015.i09
Legates, D.R., McCabe, G.J. 1999. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. https://doi.org/10.1029/1998WR900018
Littmann, T. 2008. Topoclimate and microclimate. In Arid Dune Ecosystems. Berlin: Springer. https://doi.org/10.1007/978-3-540-75498-5_12
Lorençone, P.A., Aparecido, L.E.D.O., Lorençone, J.A., Torsoni, G.B., Lima, R.F.D. 2022. Estimation of Air Temperature Using Climate Factors in Brazilian Sugarcane Regions. Revista Brasileira de Meteorologia, 37(1), 121-140. https://doi.org/10.1590/0102-77863710008
Marzban, F., Conrad, T., Marzban, P., Sodoudi, S. 2018. Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin, Germany. International Journal of Advanced Remote Sensing and GIS, 7(1), 2478-2517. https://doi.org/10.23953/cloud.ijarsg.337
Meek, D.W., Howell, T.A., Phene, C.J. 2009. Concordance Correlation for Model Performance Assessment: An Example with Reference Evapotranspiration Observations. Agronomy Journal, 101(4), 1012-1018. https://doi.org/10.2134/agronj2008.0180x
Montaner-Fernández, D., Morales-Salinas, L., SobrinoRodríguez, J., Cárdenas-Jirón, L., Huete, A., Fuentes-Jaque, G., Pérez-Martínez, W., Cabezas, J. 2020. Spatio-Temporal Variation of the Urban Heat Island in Santiago, Chile during Summers 2005-2017. Remote Sensing, 12(20), 3345. https://doi.org/10.3390/rs12203345
Otgonbayar, M., Atzberger, C., Mattiuzzi, M., Erdenedalai, A. 2019. Estimation of Climatologies of Average Monthly Air Temperature over Mongolia Using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques. Remote Sensing, 11(21), 2588. https://doi.org/10.3390/rs11212588
Prihodko, L., Goward, S. 1997. Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60(3), 335-346. https://doi.org/10.1016/S0034-4257(96)00216-7
Rawlings, J.O. 1988. Applied regression analysis. A research tool. Belmont: Wadsworth and Brooks/Cole.
Recondo, C., Zapico, E., Peón, J.J., Pendás, E., Aguirre, R., Abajo, A. 2011. Estimación de la temperatura del aire a partir de la temperatura de superficie obtenida con el sensor MODIS e información espaciotemporal. Una aplicación en modelos de riesgo de incendios forestales en la Península Ibérica. In: XIV Congreso de la Asociación Española de Teledetección (AET). Mieres del Camino, España, 21-23 September. pp 457-460.
Recondo, C., Peón, J.J., Zapico, E., Pendás, E. 2013. Empirical models for estimating daily surface water vapour pressure, air temperature, and humidity using MODIS and spatiotemporal variables. Applications to peninsular Spain. International Journal of Remote Sensing, 34(22), 8051-8080. https://doi.org/10.1080/01431161.2013.828185
Ruiz-Álvarez, M., Alonso-Sarria, F., GomarizCastillo, F. 2019. Interpolation of Instantaneous Air Temperature Using Geographical and MODIS Derived Variables with Machine Learning Techniques. ISPRS International Journal of GeoInformation, 8(9), 382. https://doi.org/10.3390/ijgi8090382
Sakamoto, Y., Ishiguro, M., Kitagawa, G. 1986. Akaike Information Criterion Statistics. Dordrecht, The Netherlands: D. Reidel.
Sobrino, J.A., El Kharraz, J., Li, Z.L. 2003. Surface temperature and water vapor retrieval from MODIS data. International Journal of Remote Sensing, 24(24), 5161-5182. https://doi.org/10.1080/0143116031000102502
Soto-Estrada, E. 2013. Regresión ponderada geográficamente para el estudio de la temperatura superficial en Medellín, Colombia. Revista AIDIS de Ingeniería y Ciencias Ambientales, 6(3), 42-53.
Vogt, J.V., Viau, A.A., Paquet, F. 1997. Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology, 17(14),1559-1579. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
Wan, Z. 2008. New refinements and validation of the MODIS Land-Surface Temperature/ Emissivity products. Remote Sensing of Environment, 112(1), 59-74. https://doi.org/10.1016/j.rse.2006.06.026
Willmott, C.J., Robeson, S.M. 1995. Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology, 15(2), 221-229. https://doi.org/10.1002/joc.3370150207
Willmott, C.J., Robeson, S.M. Matsuura, K. 2012. A refined index of model performance. International Journal of Climatology, 32(13), 2088-2094. https://doi.org/10.1002/joc.2419
Willmott, C., Matsuura, K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079
Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O'Donnell, J., Rowe, C.M. 1985. Statistics for the evaluation of model performance. Journal of Geophysical Research, 90(C5), 8995-9005. https://doi.org/10.1029/JC090iC05p08995
Yao, Y., Zhang, B. 2013. MODIS-based estimation of air temperature of the Tibetan Plateau. Journal of Geographical Sciences, 23(4), 627-640. https://doi.org/10.1007/s11442-013-1033-7
Zhao, C.Y., Zhang, H.X., Zhang, X.Y., Liu, M.C., Hu, Z.D., Fan, B.T. 2006. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 217(2-3), 105-119. https://doi.org/10.1016/j.tox.2005.08.019
[-]