Mostrar el registro sencillo del ítem
dc.contributor.author | Galdón-Ruíz, Alfonso | es_ES |
dc.contributor.author | Fuentes-Jaque, Guillermo | es_ES |
dc.contributor.author | Soto, Jesús | es_ES |
dc.contributor.author | Morales-Salinas, Luis | es_ES |
dc.coverage.spatial | east=-1.366216; north=38.1398141; name=Región de Murcia, Espanya | es_ES |
dc.date.accessioned | 2023-02-07T09:03:07Z | |
dc.date.available | 2023-02-07T09:03:07Z | |
dc.date.issued | 2023-01-30 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/191687 | |
dc.description.abstract | [EN] Air temperature records are acquired by networks of weather stations which may be several kilometres apart. In complex topographies the representativeness of a meteorological station may be diminished in relation to a flatter valley, and the nearest station may have no relation to a place located near it. The present study shows a simple method to estimate the spatial distribution of minimum and maximum air temperatures from MODIS land surface temperature (LST) and normalized difference vegetation index (NDVI) images. Indeed, there is a strong correlation between MODIS day and night LST products and air temperature records from meteorological stations, which is obtained by using geographically weighted regression equations, and reliable results are found. Then, the results allow to spatially interpolate the coefficients of the local regressions using altitude and NDVI as descriptor variables, to obtain maps of the whole region for minimum and maximum air temperature. Most of the meteorological stations show air temperature estimates that do not have significant differences compared to the measured values. The results showed that the regression coefficients for the selected locations are strong for the correlations between minimum temperature with LSTnight (R2 = 0.69-0.82) and maximum temperature with LSTday (R2 = 0.70-0.87) at the 47 stations. The root mean square errors (RMSE) of the statistical models are 1.0 °C and 0.8 °C for night and daytime temperatures, respectively. Furthermore, the association between each pair of data is significant at the 95% level (p<0.01). | es_ES |
dc.description.abstract | [ES] Los registros de temperatura del aire son adquiridos por redes de estaciones meteorológicas las cuales podrían estar alejadas varios kilómetros entre sí. En topografías complejas la representatividad de una estación meteorológica podría verse disminuida en relación con un valle más plano, y la estación más cercana no tener relación con un lugar ubicado cerca de ella. El presente estudio, muestra un método simple para estimar la distribución espacial de las temperaturas mínimas y máximas del aire a partir de imágenes MODIS de temperatura de la superficie terrestre (LST) y el índice de vegetación de diferencia normalizada (NDVI). En efecto, existe una fuerte correlación entre los productos LST día y noche MODIS y los registros de temperatura del aire de las estaciones meteorológicas, lo que se obtiene al usar ecuaciones de regresión ponderadas geográficamente, encontrándose resultados confiables. Luego, los resultados permiten interpolar espacialmente los coeficientes de las regresiones locales usando como variable descriptora la altitud y el NDVI, para obtener mapas de la región completa para la temperatura del aire mínima y máxima. La mayoría de las estaciones meteorológicas muestran estimaciones de temperatura del aire que no tienen diferencias significativas en comparación con los valores medidos. Los resultados mostraron que los coeficientes de regresión para las ubicaciones seleccionadas son fuertes para las correlaciones entre temperatura mínima con LST noche (R2 = 0,69-0,82) y temperatura máxima con LST día (R2 = 0,70-0,87) en las 47 estaciones. Los errores cuadráticos medios (RMSE) de los modelos estadísticos son 1,0 °C y 0,80 °C para las temperaturas nocturna y diurna, respectivamente. Además, la asociación entre cada par de datos es significativa al nivel del 95% (p<0.01). | es_ES |
dc.description.sponsorship | This research was supported by the National Fund for Scientific and Technological Development (FONDECYT), Chile, project N° 1161809. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista de Teledetección | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | MODIS | es_ES |
dc.subject | Land surface temperature | es_ES |
dc.subject | Topoclimate | es_ES |
dc.subject | Spatial regression models | es_ES |
dc.subject | Geographically weighted regression | es_ES |
dc.subject | Geostatistical interpolations | es_ES |
dc.subject | Temperatura de la superficie terrestre | es_ES |
dc.subject | Topoclimatología | es_ES |
dc.subject | Modelos de regresión espacial | es_ES |
dc.subject | Regresiones ponderadas geográficamente | es_ES |
dc.subject | Interpolación geoestadística | es_ES |
dc.title | A simple method for the estimation of minimum and maximum air temperature monthly mean maps using MODIS images in the region of Murcia, Spain | es_ES |
dc.title.alternative | Un método simple para la estimación de los mapas medios mensuales de temperaturas mínimas y máximas del aire utilizando imágenes MODIS en la región de Murcia, España | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/raet.2023.18909 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//1161809 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Galdón-Ruíz, A.; Fuentes-Jaque, G.; Soto, J.; Morales-Salinas, L. (2023). A simple method for the estimation of minimum and maximum air temperature monthly mean maps using MODIS images in the region of Murcia, Spain. Revista de Teledetección. (61):59-71. https://doi.org/10.4995/raet.2023.18909 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2023.18909 | es_ES |
dc.description.upvformatpinicio | 59 | es_ES |
dc.description.upvformatpfin | 71 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 61 | es_ES |
dc.identifier.eissn | 1988-8740 | |
dc.relation.pasarela | OJS\18909 | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.description.references | Akaike, H. 1973. Information Theory and an Extension of the Maximum Likelihood Principle. In: 2nd International Symposium on Information Theory. Budapest, Hungary, 2-8 September. pp 267-281. | es_ES |
dc.description.references | Aparecido, L.E.D.O., Moraes, J.R.D.S.C.D., Lima, R.F.D., Torsoni, G.B. 2022. Spatial Interpolation Techniques to Map Rainfall in Southeast Brazil. Revista Brasileira de Meteorologia, 37(1), 141-155. https://doi.org/10.1590/0102-77863710015 | es_ES |
dc.description.references | Burnham, K.P., Anderson, D.R. 2002. Model selection and inference: A practical information-theoretic approach. New York: Springer-Verlag. | es_ES |
dc.description.references | Bustos, E., Meza, F.J. 2015. A method to estimate maximum and minimum air temperature using MODIS surface temperature and vegetation data: application to the Maipo Basin, Chile. Theoretical and Applied Climatology, 120, 211-226. https://doi.org/10.1007/s00704-014-1167-2 | es_ES |
dc.description.references | Cortes, C., Vapnik, V. 1995. Support-Vector Networks. Machine Learning, 20, 273-297. https://doi.org/10.1007/BF00994018 | es_ES |
dc.description.references | Cristóbal, J., Ninyerola, M., Pons, X. 2008. Modeling air temperature through a combination of remote sensing and GIS data. Journal of Geophysical Research: Atmospheres, 113(D13). https://doi.org/10.1029/2007JD009318 | es_ES |
dc.description.references | Draper, N.R., Smith, H. 1998. Applied regression analysis. 326. New York: John Wiley & Sons. https://doi.org/10.1002/9781118625590 | es_ES |
dc.description.references | Estévez, J., Gavilán, P., Giráldez J.V. 2011. Guidelines on validation procedures for meteorological data from automatic weather stations. Journal of Hydrology. 402(1-2), 144-154. https://doi.org/10.1016/j.jhydrol.2011.02.031 | es_ES |
dc.description.references | Fotheringham, S., Brundson, C.H., Charlton, M. 2002. Geographically Weighted Regression: The analysis of spatially varying relationships. Chichester: John Wiley & Sons. | es_ES |
dc.description.references | Gutiérrez-Puebla, J., Daniel-Cardozo, O., García Palomares, J.C. 2012. Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las estaciones del Metro de Madrid. In: XV Congreso Nacional de Tecnologías de la Información Geográfica. Madrid, Spain, 19-21 September. pp 327-338. | es_ES |
dc.description.references | Herrera, S., Fernández, J., Gutiérrez, J.M. 2016. Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. International Journal of Climatology, 36(2), 900-908. https://doi.org/10.1002/joc.4391 | es_ES |
dc.description.references | Huang, F., Ma, W., Wang, B., Hu, Z., Ma, Y., Sun, G., Lin Y. 2017. Air temperature estimation with MODIS data over the Northern Tibetan Plateau. Advances in Atmospheric Sciences, 34(5), 650-662. https://doi.org/10.1007/s00376-016-6152-5 | es_ES |
dc.description.references | Jarvis, C.H., Stuart, N. 2001. A Comparison among Strategies for Interpolating Maximum and Minimum Daily Air Temperatures. Part II: The Interaction between Number of Guiding Variables and the Type of Interpolation Method. Journal of Applied Meteorology, 40(6), 1075-1084. https://doi.org/10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2 | es_ES |
dc.description.references | Karatzoglou, A., Meyer, D., Hornik, K. 2006. Support vector machines in R. Journal of Statistical Software, 15(9), 1-28. https://doi.org/10.18637/jss.v015.i09 | es_ES |
dc.description.references | Legates, D.R., McCabe, G.J. 1999. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. https://doi.org/10.1029/1998WR900018 | es_ES |
dc.description.references | Littmann, T. 2008. Topoclimate and microclimate. In Arid Dune Ecosystems. Berlin: Springer. https://doi.org/10.1007/978-3-540-75498-5_12 | es_ES |
dc.description.references | Lorençone, P.A., Aparecido, L.E.D.O., Lorençone, J.A., Torsoni, G.B., Lima, R.F.D. 2022. Estimation of Air Temperature Using Climate Factors in Brazilian Sugarcane Regions. Revista Brasileira de Meteorologia, 37(1), 121-140. https://doi.org/10.1590/0102-77863710008 | es_ES |
dc.description.references | Marzban, F., Conrad, T., Marzban, P., Sodoudi, S. 2018. Estimation of the Near-Surface Air Temperature during the Day and Nighttime from MODIS in Berlin, Germany. International Journal of Advanced Remote Sensing and GIS, 7(1), 2478-2517. https://doi.org/10.23953/cloud.ijarsg.337 | es_ES |
dc.description.references | Meek, D.W., Howell, T.A., Phene, C.J. 2009. Concordance Correlation for Model Performance Assessment: An Example with Reference Evapotranspiration Observations. Agronomy Journal, 101(4), 1012-1018. https://doi.org/10.2134/agronj2008.0180x | es_ES |
dc.description.references | Montaner-Fernández, D., Morales-Salinas, L., SobrinoRodríguez, J., Cárdenas-Jirón, L., Huete, A., Fuentes-Jaque, G., Pérez-Martínez, W., Cabezas, J. 2020. Spatio-Temporal Variation of the Urban Heat Island in Santiago, Chile during Summers 2005-2017. Remote Sensing, 12(20), 3345. https://doi.org/10.3390/rs12203345 | es_ES |
dc.description.references | Otgonbayar, M., Atzberger, C., Mattiuzzi, M., Erdenedalai, A. 2019. Estimation of Climatologies of Average Monthly Air Temperature over Mongolia Using MODIS Land Surface Temperature (LST) Time Series and Machine Learning Techniques. Remote Sensing, 11(21), 2588. https://doi.org/10.3390/rs11212588 | es_ES |
dc.description.references | Prihodko, L., Goward, S. 1997. Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60(3), 335-346. https://doi.org/10.1016/S0034-4257(96)00216-7 | es_ES |
dc.description.references | Rawlings, J.O. 1988. Applied regression analysis. A research tool. Belmont: Wadsworth and Brooks/Cole. | es_ES |
dc.description.references | Recondo, C., Zapico, E., Peón, J.J., Pendás, E., Aguirre, R., Abajo, A. 2011. Estimación de la temperatura del aire a partir de la temperatura de superficie obtenida con el sensor MODIS e información espaciotemporal. Una aplicación en modelos de riesgo de incendios forestales en la Península Ibérica. In: XIV Congreso de la Asociación Española de Teledetección (AET). Mieres del Camino, España, 21-23 September. pp 457-460. | es_ES |
dc.description.references | Recondo, C., Peón, J.J., Zapico, E., Pendás, E. 2013. Empirical models for estimating daily surface water vapour pressure, air temperature, and humidity using MODIS and spatiotemporal variables. Applications to peninsular Spain. International Journal of Remote Sensing, 34(22), 8051-8080. https://doi.org/10.1080/01431161.2013.828185 | es_ES |
dc.description.references | Ruiz-Álvarez, M., Alonso-Sarria, F., GomarizCastillo, F. 2019. Interpolation of Instantaneous Air Temperature Using Geographical and MODIS Derived Variables with Machine Learning Techniques. ISPRS International Journal of GeoInformation, 8(9), 382. https://doi.org/10.3390/ijgi8090382 | es_ES |
dc.description.references | Sakamoto, Y., Ishiguro, M., Kitagawa, G. 1986. Akaike Information Criterion Statistics. Dordrecht, The Netherlands: D. Reidel. | es_ES |
dc.description.references | Sobrino, J.A., El Kharraz, J., Li, Z.L. 2003. Surface temperature and water vapor retrieval from MODIS data. International Journal of Remote Sensing, 24(24), 5161-5182. https://doi.org/10.1080/0143116031000102502 | es_ES |
dc.description.references | Soto-Estrada, E. 2013. Regresión ponderada geográficamente para el estudio de la temperatura superficial en Medellín, Colombia. Revista AIDIS de Ingeniería y Ciencias Ambientales, 6(3), 42-53. | es_ES |
dc.description.references | Vogt, J.V., Viau, A.A., Paquet, F. 1997. Mapping regional air temperature fields using satellite-derived surface skin temperatures. International Journal of Climatology, 17(14),1559-1579. https://doi.org/10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 | es_ES |
dc.description.references | Wan, Z. 2008. New refinements and validation of the MODIS Land-Surface Temperature/ Emissivity products. Remote Sensing of Environment, 112(1), 59-74. https://doi.org/10.1016/j.rse.2006.06.026 | es_ES |
dc.description.references | Willmott, C.J., Robeson, S.M. 1995. Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology, 15(2), 221-229. https://doi.org/10.1002/joc.3370150207 | es_ES |
dc.description.references | Willmott, C.J., Robeson, S.M. Matsuura, K. 2012. A refined index of model performance. International Journal of Climatology, 32(13), 2088-2094. https://doi.org/10.1002/joc.2419 | es_ES |
dc.description.references | Willmott, C., Matsuura, K. 2005. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079 | es_ES |
dc.description.references | Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O'Donnell, J., Rowe, C.M. 1985. Statistics for the evaluation of model performance. Journal of Geophysical Research, 90(C5), 8995-9005. https://doi.org/10.1029/JC090iC05p08995 | es_ES |
dc.description.references | Yao, Y., Zhang, B. 2013. MODIS-based estimation of air temperature of the Tibetan Plateau. Journal of Geographical Sciences, 23(4), 627-640. https://doi.org/10.1007/s11442-013-1033-7 | es_ES |
dc.description.references | Zhao, C.Y., Zhang, H.X., Zhang, X.Y., Liu, M.C., Hu, Z.D., Fan, B.T. 2006. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology, 217(2-3), 105-119. https://doi.org/10.1016/j.tox.2005.08.019 | es_ES |