- -

PhenoApp. Una aplicación basada en Google Earth Engine para el monitoreo de la fenología

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PhenoApp. Una aplicación basada en Google Earth Engine para el monitoreo de la fenología

Mostrar el registro completo del ítem

García-Díaz, D.; Díaz-Delgado, R. (2023). PhenoApp. Una aplicación basada en Google Earth Engine para el monitoreo de la fenología. Revista de Teledetección. (61):73-81. https://doi.org/10.4995/raet.2023.18767

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191688

Ficheros en el ítem

Metadatos del ítem

Título: PhenoApp. Una aplicación basada en Google Earth Engine para el monitoreo de la fenología
Otro titulo: PhenoApp. A Google Earth Engine based tool for monitoring phenology
Autor: García-Díaz, Diego Díaz-Delgado, Ricardo
Fecha difusión:
Resumen:
[EN] PhenoApp application have been developed within the framework of the eLTER Plus and SUMHAL projects, as a tool aimed at scientists and managers of the sites integrated in the eLTER network, for which long-term phenology ...[+]


[ES] La aplicación PhenoApp ha sido desarrollada en el marco de los proyectos eLTER Plus y SUMHAL, como una herramienta dirigida a científicos y gestores de los sitios integrados en la red eLTER, con la cual puede realizarse ...[+]
Palabras clave: Phenology , Phenocams , Google Earth Engine , Geemap , Python , Fenología , Fenocámaras
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2023.18767
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2023.18767
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/871128
info:eu-repo/grantAgreement/EC/FEDER/POPE 2014-2020/LIFEWATCH-2019-09-CSIC-13
Agradecimientos:
Este trabajo se financia gracias al proyecto eLTER Plus (INFRAIA, Horizonte 2020, Agreement No 871128) y a través de las actuaciones FEDER [SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020] por el Ministerio de Ciencia, ...[+]
Tipo: Artículo

References

Amani, M., Ghorbanian, A., Ali Ahmadi, S., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q. and Brisco, B. 2020. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052

Friedl, M., Gray, J., Sulla-Menashe, D., 2019. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2022-02-09.

García, D. 2020. Ndvi2Gif, Python Package Index - PyPI. Recuperado en mayo de 2020 de https://pypi.org/project/ndvi2gif/. [+]
Amani, M., Ghorbanian, A., Ali Ahmadi, S., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q. and Brisco, B. 2020. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052

Friedl, M., Gray, J., Sulla-Menashe, D., 2019. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2022-02-09.

García, D. 2020. Ndvi2Gif, Python Package Index - PyPI. Recuperado en mayo de 2020 de https://pypi.org/project/ndvi2gif/.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Haase, P., Frenzel, M., Klotz, S., Musche, M., Stoll, S. 2016. The long-term ecological research (LTER) network: Relevance, current status, future perspective and examples from marine, freshwater and terrestrial long-term observation. Ecological Indicators, 65 1-3. https://doi.org/10.1016/j.ecolind.2016.01.040

Haase, P., Tonkin, J.D., Stoll, S., Burkhard, B., Frenzel, M., Geijzendorffer, I.R., Häuser, C., Klotz, S., Kühn, I., McDowell, W.H., Mirtl, M., Müller, F., Musche, M., Penner, J., Zacharias, S., Schmeller, D.S. 2018. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Science of The Total Environment 613-614, 1376-1384. https://doi.org/10.1016/j.scitotenv.2017.08.111

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., Jupyter development team. 2016. Jupyter Notebooks - a publishing format for reproducible computational workflows. Loizides, Fernando and Scmidt, Birgit (eds.) In Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press. pp. 87-90. https://doi.org/10.3233/978-1-61499-649-1-87

Lopatín, J., Paredes, J. 2021. PhenoPY. Recuperado en diciembre de 2019 de https://github.com/JavierLopatin/PhenoPY

Moore, R.T., Hansen, M.C. 2011. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis 2011:IN43C-02. American Geophysical Union, Fall Meeting 2011.

Morgen W.V. Burke, Bradley C. Rundquist., 2021. Scaling Phenocam GCC, NDVI, and EVI2 with Harmonized Landsat-Sentinel using Gaussian Processes. Agricultural and Forest Meteorology, 300, 108316, https://doi.org/10.1016/j.agrformet.2020.108316

Richardson, A., Hufkens, K., Milliman, T. et al., 2018. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data 5, 180028. https://doi.org/10.1038/sdata.2018.28

Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., Tong, X., Ardö, J., Eklundh, L. 2021. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment, 260, https://doi.org/10.1016/j.rse.2021.112456

Wohner, C., Peterseil, J., Klug, H. 2022. Designing and implementing a data model for describing environmental monitoring and research sites. In Ecological Informatics, 70, p. 101708). Elsevier BV. https://doi.org/10.1016/j.ecoinf.2022.101708

Wu, Q. 2020. Geemap: A Python package for interactive mapping with Google Earth Engine. The Journal of Open Source Software, 5(51), 2305. https://doi.org/10.21105/joss.02305

Wu, Q. 2021. Interactive mapping and geospatial analysis with Leafmap and Jupyter. In Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science (SpatialAPI '21). Association for Computing Machinery, New York, NY, USA, Article 1, 1-2. https://doi.org/10.1145/3486189.3490015

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem