- -

Implementación de embalses en cálculos hidrológicos con Iber

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Implementación de embalses en cálculos hidrológicos con Iber

Mostrar el registro completo del ítem

García-Alén, G.; García-Feal, O.; Cea, L.; Puertas, J. (2023). Implementación de embalses en cálculos hidrológicos con Iber. Ingeniería del Agua. 27(1):59-72. https://doi.org/10.4995/ia.2023.18750

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/191708

Ficheros en el ítem

Metadatos del ítem

Título: Implementación de embalses en cálculos hidrológicos con Iber
Otro titulo: Implementation of reservoirs in hydrological calculations with Iber
Autor: García-Alén, Gonzalo García-Feal, Orlando Cea, Luis Puertas, Jerónimo
Fecha difusión:
Resumen:
[EN] Accounting for the flood routing effect of reservoirs in the assessment of flood discharges is essential in basins where the hydrology is conditioned by the presence of one or more dams. This paper presents the ...[+]


[ES] La consideración del efecto laminador de los embalses en la evaluación de caudales de avenida es un aspecto fundamental en aquellas cuencas donde la hidrología está condicionada por la presencia de presas. En este ...[+]
Palabras clave: Reservoir , Dam , Hydrology , Iber , Lamination , Flood , Embalse , Presa , Hidrología , Laminación , Avenida
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del Agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2023.18750
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2023.18750
Código del Proyecto:
info:eu-repo/grantAgreement/Interreg//EAPA_45%2F2018_AA-FLOODS
Agradecimientos:
La investigación que aquí se presenta ha sido financiada por el proyecto EAPA_45/2018_AA-FLOODS
Tipo: Artículo

References

Bellos, V., Papageorgaki, I., Kourtis, I., Vangelis, H., Kalogiros, I., Tsakiris, G. 2020. Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. Natural Hazards, 101(3), 711–726. https://doi.org/10.1007/s11069-020-03891-3

Bladé-Castellet, E., Cea, L., Corestein, G. 2014. Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004 [+]
Bellos, V., Papageorgaki, I., Kourtis, I., Vangelis, H., Kalogiros, I., Tsakiris, G. 2020. Reconstruction of a flash flood event using a 2D hydrodynamic model under spatial and temporal variability of storm. Natural Hazards, 101(3), 711–726. https://doi.org/10.1007/s11069-020-03891-3

Bladé-Castellet, E., Cea, L., Corestein, G. 2014. Modelización numérica de inundaciones fluviales. Ingeniería Del Agua, 18(1), 68. https://doi.org/10.4995/ia.2014.3144

Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004

Cea, L., Bladé, E. 2015. A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications. Water Resources Research, 51(7), 5464–5486. https://doi.org/10.1002/2014WR016547

Cea, L., Fraga, I. 2018. Incorporating Antecedent Moisture Conditions and Intraevent Variability of Rainfall on Flood Frequency Analysis in Poorly Gauged Basins. Water Resources Research, 54(11), 8774–8791. https://doi.org/10.1029/2018WR023194

Cea, L., Legout, C., Darboux, F., Esteves, M., Nord, G. 2014. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data. Journal of Hydrology, 513, 142–153. https://doi.org/10.1016/j.jhydrol.2014.03.052

Cea, L, Garrido, M., Puertas, J., Jácome, A., Del Río, H., Suárez, J. 2010. Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(9), 1998–2008. https://doi.org/10.2166/wst.2010.746

Cea, Luis, Álvarez, M., Puertas, J. 2022. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). Journal of Hydrology: Regional Studies, 44, 101247. https://doi.org/10.1016/j.ejrh.2022.101247

Cea, L., Vila, G., García-Alén, G., Puertas, J., Pena, L. 2022. Hydraulic Modeling of Bridges in Two-Dimensional Shallow Water Models. Journal of Hydraulic Engineering, 148(8), 6022006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001992

Costabile, P., Costanzo, C., Macchione, F. 2012. Comparative analysis of overland flow models using finite volume schemes. Journal of Hydroinformatics, 14(1), 122–135. https://doi.org/10.2166/hydro.2011.077

European Union Copernicus Land Monitoring Service. 2018. European Union, Copernicus Land Monitoring Service. Eur. Environ. Agency.

Fernández-Pato, J., Morales-Hernández, M., García-Navarro, P. 2018. Implicit finite volume simulation of 2D shallow water flows in flexible meshes. Computer Methods in Applied Mechanics and Engineering, 328, 1–25. https://doi.org/10.1016/j.cma.2017.08.050

Ferrer-Polo, F.J. 2000. Recomendaciones para el cálculo hidrometeorológico de avenidas. CEDEX. Centro de Estudios y Experimentación de Obras Públicas.

Fraga, I., Cea, L., Puertas, J. 2013. Experimental study of the water depth and rainfall intensity effects on the bed roughness coefficient used in distributed urban drainage models. Journal of Hydrology, 505, 266–275. https://doi.org/10.1016/j.jhydrol.2013.10.005

Fraga, I., Cea, L., Puertas, J. 2019. Effect of rainfall uncertainty on the performance of physically based rainfall–runoff models. Hydrological Processes, 33(1), 160–173. https://doi.org/10.1002/hyp.13319

Fraga, I., Cea, L., Puertas, J., Suárez, J., Jiménez, V., Jácome, A. 2016. Global sensitivity and GLUE-based uncertainty analysis of a 2D-1D dual urban drainage model. Journal of Hydrologic Engineering, 21(5), 1–11. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001335

Francés, F., Vélez, J.I., Vélez, J.J. 2007. Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1–2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032

García-Alén, G., García-Fonte, O., Cea, L., Pena, L., Puertas, J. 2021. Modelling Weirs in Two-Dimensional Shallow Water Models. Water, 13(16), 2152. https://doi.org/10.3390/w13162152

García-Alén, G., González-Cao, J., Fernández-Nóvoa, D., Gómez-Gesteira, M., Cea, L., Puertas, J. 2022. Analysis of two sources of variability of basin outflow hydrographs computed with the 2D shallow water model Iber: Digital Terrain Model and unstructured mesh size. Journal of Hydrology, 612, 128182. https://doi.org/10.1016/j.jhydrol.2022.128182

García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L., Domínguez, J.M., Formella, A. 2018. An accelerated tool for flood modelling based on Iber. Water (Switzerland), 10(10), 1–23. https://doi.org/10.3390/w10101459

IGN-CNIG. 2021. Instituto Geográfico Nacional. Centro de Descargas Del CNIG. http://centrodedescargas.cnig.es/CentroDescargas/index.jsp

Kannan, N., Santhi, C., Williams, J.R., Arnold, J.G. 2007. Development of a continuous soil moisture accounting procedure for curve number methodology and its behaviour with different evapotranspiration methods. Wiley InterScience, 2274(November 2008), 2267–2274. https://doi.org/10.1002/hyp.6811

Liang, D., Özgen, I., Hinkelmann, R., Xiao, Y., Chen, J.M. 2015. Shallow water simulation of overland flows in idealised catchments. Environmental Earth Sciences, 74(11), 7307–7318. https://doi.org/10.1007/s12665-015-4744-5

Marcos, S.R., Belén, M.C., Ernest, B., Irene, S., Arnau, A., Hélène, R., Romu, R. 2020. NRCS-CN Estimation from Onsite and Remote Sensing Data for Management of a Reservoir in the Eastern Pyrenees. Journal of Hydrologic Engineering, 25(9), 5020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979

Ministerio de Fomento; Dirección General de Carreteras. 2019. NORMA 5.2–IC de la Instrucción de carreteras, Drenaje superficial. Boletín Oficial del Estado, núm. 136, de 5 de junio de 2018, PP. 58028 a 58030. https://www.boe.es/eli/es/res/2018/03/26/(3)

Ministerio de Medio Ambiente y Medio Rural y Marino. 2013. Mapa de Caudales Máximos (CAUMAX, v2.3). CEDEX. Centro de Estudios y Experimentación de Obras Públicas.

Petaccia, G., Leporati, F., Torti, E. 2016. OpenMP and CUDA simulations of Sella Zerbino Dam break on unstructured grids. Computational Geosciences, 20(5), 1123–1132. https://doi.org/10.1007/s10596-016-9580-5

Refsgaard, J.C. 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1–4), 69–97. https://doi.org/10.1016/S0022-1694(96)03329-X

Sánchez, F.J., Lastra, J. 2011. Guía metodológica para el desarrollo del Sistema Nacional de Cartografía de Zonas Inundables. Madrid, Ministerio de Medio Ambiente, y Medio Rural y Marino.

Sanders, B.F., Schubert, J.E. 2019. PRIMo: Parallel raster inundation model. Advances in Water Resources, 126, 79–95. https://doi.org/10.1016/j.advwatres.2019.02.007

Sanz-Ramos, M., Bladé, E., González-Escalona, F., Olivares, G., Aragón-Hernández, J.L. 2021. Interpreting the Manning Roughness Coefficient in Overland Flow Simulations with Coupled Hydrological-Hydraulic Distributed Models. Water, 13(23), 3433. https://doi.org/10.3390/w13233433

Sanz-Ramos, M., Cea, L., Bladé, E., López-Gómez, D., Sañudo, E., García-Alén, G., Aragón-Hernández, J.L. 2022. Iber v3. Manual de referencia e interfaz de usuario de las nuevas implementaciones. Centre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE). https://doi.org/10.23967/iber.2022.01

Uber, M., Nord, G., Legout, C., Cea, L. 2021. How do modeling choices and erosion zone locations impact the representation of connectivity and the dynamics of suspended sediments in a multi-source soil erosion model? Earth Surf. Dynam., 9(1), 123–144. https://doi.org/10.5194/esurf-9-123-2021

Xia, X., Liang, Q., Ming, X. 2019. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132, 103392. https://doi.org/10.1016/j.advwatres.2019.103392

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem